Matches in SemOpenAlex for { <https://semopenalex.org/work/W3166124927> ?p ?o ?g. }
- W3166124927 endingPage "126517" @default.
- W3166124927 startingPage "126517" @default.
- W3166124927 abstract "• A hybrid 2D hydraulic-MGGP approach is proposed. • The proposed method is employed to model spatial distribution of flow depth. • The numerical model is validated against field measurements. • The novel advantages of the proposed approach are demonstrated. • A comparison between MGGP and SGGP approaches and confidence analysis are reported. Modeling spatial distribution of flow depth in fluvial systems is crucial for flow mitigation, river rehabilitation, and design of water resources infrastructure. Flow depth in fluvial systems can be typically estimated using hydrological or physics-based hydraulic models. However, hydrological models may not be able to provide satisfactory predictions for catchments with limited data because they normally ignored the strict conservation of momentum. Traditional fully physics-based hydraulic models are often very computationally expensive, limiting their wide usage in practical applications. In this study, a novel method, based on a hybrid two-dimensional (2D) hydraulic-multigene genetic programming (MGGP) approach, is proposed and employed to model the spatial distribution of flow depth in fluvial systems. A 2D hydraulic model was constructed using the TELEMAC-2D software and validated against field measurements. The validated model was then assumed to reflect the real physical processes and utilized to carry out additional computations to obtain spatial distribution of flow depth under different discharge scenarios, which provided a sufficient synthetic dataset for training machine learning models based on the MGGP technique. The study area (a segment of the Ottawa River near the island named Île Kettle) was divided into 34 sub-regions to further reduce the computational costs of the training processes and the complexity of the evolved models. The numerical data were distributed to the corresponding sub-regions, and an MGGP-based model was trained for each sub-region. These models are compact explicit arithmetic equations that can be readily transferable and can immediately output the flow depth at any point in the corresponding sub-region as functions of the flow rate, longitudinal, and transversal coordinates. The best MGGP model for each sub-region amongst all the generated models was identified using the Pareto optimization approach. The results showed that the best MGGP models satisfactorily reproduced the training data and predicted the testing data (the root mean square errors were 0.303 m and 0.306 m, respectively), demonstrating the predictive capability of the approach. A comparison between MGGP and single-gene genetic programming (SGGP) approaches and confidence analysis were also reported, which demonstrated the good performance of the proposed approach. Furthermore, it took about 53 min for the hydraulic model to complete each simulation, but it took only about 0.56 s using the final model; the total size of the hydraulic output files for 12 different sizes was 432, 948 KB, but the total size of the script file for the final model was only about 46 KB. Therefore, the present study found that the hybrid 2D hydraulic-MGGP approach was satisfactorily accurate, fast to run, and easy to use, and thus, it is a promising tool for modeling spatial distribution of flow depth in fluvial systems." @default.
- W3166124927 created "2021-06-22" @default.
- W3166124927 creator A5018985640 @default.
- W3166124927 creator A5020909378 @default.
- W3166124927 creator A5044630667 @default.
- W3166124927 date "2021-09-01" @default.
- W3166124927 modified "2023-10-12" @default.
- W3166124927 title "Modeling spatial distribution of flow depth in fluvial systems using a hybrid two-dimensional hydraulic-multigene genetic programming approach" @default.
- W3166124927 cites W1968186331 @default.
- W3166124927 cites W2023300537 @default.
- W3166124927 cites W2070464993 @default.
- W3166124927 cites W2142911017 @default.
- W3166124927 cites W2268559320 @default.
- W3166124927 cites W2593388048 @default.
- W3166124927 cites W2594459371 @default.
- W3166124927 cites W2772983018 @default.
- W3166124927 cites W2790604750 @default.
- W3166124927 cites W2792863240 @default.
- W3166124927 cites W2799681817 @default.
- W3166124927 cites W2802411748 @default.
- W3166124927 cites W2886751985 @default.
- W3166124927 cites W2972796812 @default.
- W3166124927 cites W2979407426 @default.
- W3166124927 cites W2999898186 @default.
- W3166124927 cites W3007230685 @default.
- W3166124927 cites W3011850987 @default.
- W3166124927 cites W3023438761 @default.
- W3166124927 cites W3024645822 @default.
- W3166124927 cites W3027515244 @default.
- W3166124927 cites W3033257613 @default.
- W3166124927 cites W3035009502 @default.
- W3166124927 cites W3035904017 @default.
- W3166124927 cites W3037111239 @default.
- W3166124927 cites W3038866904 @default.
- W3166124927 cites W3040533943 @default.
- W3166124927 cites W3046781693 @default.
- W3166124927 cites W3048356388 @default.
- W3166124927 cites W3083014107 @default.
- W3166124927 cites W3086498997 @default.
- W3166124927 cites W3113116348 @default.
- W3166124927 doi "https://doi.org/10.1016/j.jhydrol.2021.126517" @default.
- W3166124927 hasPublicationYear "2021" @default.
- W3166124927 type Work @default.
- W3166124927 sameAs 3166124927 @default.
- W3166124927 citedByCount "17" @default.
- W3166124927 countsByYear W31661249272021 @default.
- W3166124927 countsByYear W31661249272022 @default.
- W3166124927 countsByYear W31661249272023 @default.
- W3166124927 crossrefType "journal-article" @default.
- W3166124927 hasAuthorship W3166124927A5018985640 @default.
- W3166124927 hasAuthorship W3166124927A5020909378 @default.
- W3166124927 hasAuthorship W3166124927A5044630667 @default.
- W3166124927 hasConcept C109007969 @default.
- W3166124927 hasConcept C110332635 @default.
- W3166124927 hasConcept C112959462 @default.
- W3166124927 hasConcept C11413529 @default.
- W3166124927 hasConcept C114793014 @default.
- W3166124927 hasConcept C119857082 @default.
- W3166124927 hasConcept C127313418 @default.
- W3166124927 hasConcept C187320778 @default.
- W3166124927 hasConcept C202444582 @default.
- W3166124927 hasConcept C2524010 @default.
- W3166124927 hasConcept C33923547 @default.
- W3166124927 hasConcept C38349280 @default.
- W3166124927 hasConcept C41008148 @default.
- W3166124927 hasConcept C45374587 @default.
- W3166124927 hasConcept C76886044 @default.
- W3166124927 hasConcept C9652623 @default.
- W3166124927 hasConceptScore W3166124927C109007969 @default.
- W3166124927 hasConceptScore W3166124927C110332635 @default.
- W3166124927 hasConceptScore W3166124927C112959462 @default.
- W3166124927 hasConceptScore W3166124927C11413529 @default.
- W3166124927 hasConceptScore W3166124927C114793014 @default.
- W3166124927 hasConceptScore W3166124927C119857082 @default.
- W3166124927 hasConceptScore W3166124927C127313418 @default.
- W3166124927 hasConceptScore W3166124927C187320778 @default.
- W3166124927 hasConceptScore W3166124927C202444582 @default.
- W3166124927 hasConceptScore W3166124927C2524010 @default.
- W3166124927 hasConceptScore W3166124927C33923547 @default.
- W3166124927 hasConceptScore W3166124927C38349280 @default.
- W3166124927 hasConceptScore W3166124927C41008148 @default.
- W3166124927 hasConceptScore W3166124927C45374587 @default.
- W3166124927 hasConceptScore W3166124927C76886044 @default.
- W3166124927 hasConceptScore W3166124927C9652623 @default.
- W3166124927 hasFunder F4320328119 @default.
- W3166124927 hasFunder F4320334593 @default.
- W3166124927 hasLocation W31661249271 @default.
- W3166124927 hasOpenAccess W3166124927 @default.
- W3166124927 hasPrimaryLocation W31661249271 @default.
- W3166124927 hasRelatedWork W1992510953 @default.
- W3166124927 hasRelatedWork W2014234281 @default.
- W3166124927 hasRelatedWork W2042251108 @default.
- W3166124927 hasRelatedWork W2042483172 @default.
- W3166124927 hasRelatedWork W2055693820 @default.
- W3166124927 hasRelatedWork W2110423347 @default.
- W3166124927 hasRelatedWork W2113927977 @default.
- W3166124927 hasRelatedWork W2160845538 @default.
- W3166124927 hasRelatedWork W2169177668 @default.