Matches in SemOpenAlex for { <https://semopenalex.org/work/W3166146731> ?p ?o ?g. }
- W3166146731 endingPage "146045822110216" @default.
- W3166146731 startingPage "146045822110216" @default.
- W3166146731 abstract "Overcrowding in emergency departments (EDs) is a primary concern for hospital administration. They aim to efficiently manage patient demands and reducing stress in the ED. Detection of abnormal ED demands (patient flows) in hospital systems aids ED managers to obtain appropriate decisions by optimally allocating the available resources following patient attendance. This paper presents a monitoring strategy that provides an early alert in an ED when an abnormally high patient influx occurs. Anomaly detection using this strategy involves the amalgamation of autoregressive-moving-average (ARMA) time series models with the generalized likelihood ratio (GLR) chart. A nonparametric procedure based on kernel density estimation is employed to determine the detection threshold of the ARMA-GLR chart. The developed ARMA-based GLR has been validated through practical data from the ED at Lille Hospital, France. Then, the ARMA-based GLR method’s performance was compared to that of other commonly used charts, including a Shewhart chart and an exponentially weighted moving average chart; it proved more accurate." @default.
- W3166146731 created "2021-06-22" @default.
- W3166146731 creator A5055477773 @default.
- W3166146731 creator A5059861156 @default.
- W3166146731 creator A5087572406 @default.
- W3166146731 creator A5090118631 @default.
- W3166146731 date "2021-04-01" @default.
- W3166146731 modified "2023-09-23" @default.
- W3166146731 title "Monitoring patient flow in a hospital emergency department: ARMA-based nonparametric GLRT scheme" @default.
- W3166146731 cites W1489950266 @default.
- W3166146731 cites W1963802829 @default.
- W3166146731 cites W1965421670 @default.
- W3166146731 cites W1970414061 @default.
- W3166146731 cites W1977886272 @default.
- W3166146731 cites W1983998979 @default.
- W3166146731 cites W1990041464 @default.
- W3166146731 cites W2018378938 @default.
- W3166146731 cites W2030448404 @default.
- W3166146731 cites W2030704357 @default.
- W3166146731 cites W2038804786 @default.
- W3166146731 cites W2052004671 @default.
- W3166146731 cites W2057532896 @default.
- W3166146731 cites W2060649099 @default.
- W3166146731 cites W2075925932 @default.
- W3166146731 cites W2083311111 @default.
- W3166146731 cites W2088784004 @default.
- W3166146731 cites W2095049909 @default.
- W3166146731 cites W2110216956 @default.
- W3166146731 cites W2118274278 @default.
- W3166146731 cites W2143003731 @default.
- W3166146731 cites W2143085261 @default.
- W3166146731 cites W2146785466 @default.
- W3166146731 cites W2168113589 @default.
- W3166146731 cites W2170159373 @default.
- W3166146731 cites W2175657233 @default.
- W3166146731 cites W2417341431 @default.
- W3166146731 cites W2516336141 @default.
- W3166146731 cites W2547398772 @default.
- W3166146731 cites W2619719375 @default.
- W3166146731 cites W2786101128 @default.
- W3166146731 cites W2887768779 @default.
- W3166146731 cites W2907322536 @default.
- W3166146731 cites W3000993892 @default.
- W3166146731 cites W3007412959 @default.
- W3166146731 cites W3042316884 @default.
- W3166146731 cites W4233014035 @default.
- W3166146731 cites W4235457221 @default.
- W3166146731 cites W4298202752 @default.
- W3166146731 cites W4300931409 @default.
- W3166146731 cites W769973221 @default.
- W3166146731 cites W988335224 @default.
- W3166146731 doi "https://doi.org/10.1177/14604582211021649" @default.
- W3166146731 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34096378" @default.
- W3166146731 hasPublicationYear "2021" @default.
- W3166146731 type Work @default.
- W3166146731 sameAs 3166146731 @default.
- W3166146731 citedByCount "7" @default.
- W3166146731 countsByYear W31661467312021 @default.
- W3166146731 countsByYear W31661467312022 @default.
- W3166146731 countsByYear W31661467312023 @default.
- W3166146731 crossrefType "journal-article" @default.
- W3166146731 hasAuthorship W3166146731A5055477773 @default.
- W3166146731 hasAuthorship W3166146731A5059861156 @default.
- W3166146731 hasAuthorship W3166146731A5087572406 @default.
- W3166146731 hasAuthorship W3166146731A5090118631 @default.
- W3166146731 hasBestOaLocation W31661467311 @default.
- W3166146731 hasConcept C102366305 @default.
- W3166146731 hasConcept C105795698 @default.
- W3166146731 hasConcept C118552586 @default.
- W3166146731 hasConcept C159877910 @default.
- W3166146731 hasConcept C162324750 @default.
- W3166146731 hasConcept C175706884 @default.
- W3166146731 hasConcept C190812933 @default.
- W3166146731 hasConcept C2778872837 @default.
- W3166146731 hasConcept C2780724011 @default.
- W3166146731 hasConcept C33923547 @default.
- W3166146731 hasConcept C41008148 @default.
- W3166146731 hasConcept C50522688 @default.
- W3166146731 hasConcept C71924100 @default.
- W3166146731 hasConcept C74883015 @default.
- W3166146731 hasConceptScore W3166146731C102366305 @default.
- W3166146731 hasConceptScore W3166146731C105795698 @default.
- W3166146731 hasConceptScore W3166146731C118552586 @default.
- W3166146731 hasConceptScore W3166146731C159877910 @default.
- W3166146731 hasConceptScore W3166146731C162324750 @default.
- W3166146731 hasConceptScore W3166146731C175706884 @default.
- W3166146731 hasConceptScore W3166146731C190812933 @default.
- W3166146731 hasConceptScore W3166146731C2778872837 @default.
- W3166146731 hasConceptScore W3166146731C2780724011 @default.
- W3166146731 hasConceptScore W3166146731C33923547 @default.
- W3166146731 hasConceptScore W3166146731C41008148 @default.
- W3166146731 hasConceptScore W3166146731C50522688 @default.
- W3166146731 hasConceptScore W3166146731C71924100 @default.
- W3166146731 hasConceptScore W3166146731C74883015 @default.
- W3166146731 hasFunder F4320334860 @default.
- W3166146731 hasIssue "2" @default.
- W3166146731 hasLocation W31661467311 @default.
- W3166146731 hasLocation W31661467312 @default.