Matches in SemOpenAlex for { <https://semopenalex.org/work/W3166157844> ?p ?o ?g. }
- W3166157844 endingPage "102128" @default.
- W3166157844 startingPage "102128" @default.
- W3166157844 abstract "Tracking of particles in temporal fluorescence microscopy image sequences is of fundamental importance to quantify dynamic processes of intracellular structures as well as virus structures. We introduce a probabilistic deep learning approach for fluorescent particle tracking, which is based on a recurrent neural network that mimics classical Bayesian filtering. Compared to previous deep learning methods for particle tracking, our approach takes into account uncertainty, both aleatoric and epistemic uncertainty. Thus, information about the reliability of the computed trajectories is determined. Manual tuning of tracking parameters is not necessary and prior knowledge about the noise statistics is not required. Short and long-term temporal dependencies of individual object dynamics are exploited for state prediction, and assigned detections are used to update the predicted states. For correspondence finding, we introduce a neural network which computes assignment probabilities jointly across multiple detections as well as determines the probabilities of missing detections. Training requires only simulated data and therefore tedious manual annotation of ground truth is not needed. We performed a quantitative performance evaluation based on synthetic and real 2D as well as 3D fluorescence microscopy images. We used image data of the Particle Tracking Challenge as well as real time-lapse fluorescence microscopy images displaying virus structures and chromatin structures. It turned out that our approach yields state-of-the-art results or improves the tracking results compared to previous methods." @default.
- W3166157844 created "2021-06-22" @default.
- W3166157844 creator A5005314411 @default.
- W3166157844 creator A5015740141 @default.
- W3166157844 creator A5033605271 @default.
- W3166157844 creator A5039017039 @default.
- W3166157844 creator A5065703260 @default.
- W3166157844 creator A5078640037 @default.
- W3166157844 creator A5088306941 @default.
- W3166157844 date "2021-08-01" @default.
- W3166157844 modified "2023-10-16" @default.
- W3166157844 title "Deep probabilistic tracking of particles in fluorescence microscopy images" @default.
- W3166157844 cites W1973421894 @default.
- W3166157844 cites W1982221523 @default.
- W3166157844 cites W2010629420 @default.
- W3166157844 cites W2018863717 @default.
- W3166157844 cites W2037947871 @default.
- W3166157844 cites W2047080266 @default.
- W3166157844 cites W2057096287 @default.
- W3166157844 cites W2064675550 @default.
- W3166157844 cites W2069981183 @default.
- W3166157844 cites W2077251032 @default.
- W3166157844 cites W2101916976 @default.
- W3166157844 cites W2103706175 @default.
- W3166157844 cites W2105916176 @default.
- W3166157844 cites W2113127660 @default.
- W3166157844 cites W2129140439 @default.
- W3166157844 cites W2139688603 @default.
- W3166157844 cites W2143623375 @default.
- W3166157844 cites W2171029615 @default.
- W3166157844 cites W2327320060 @default.
- W3166157844 cites W2345010043 @default.
- W3166157844 cites W2529052661 @default.
- W3166157844 cites W2550458994 @default.
- W3166157844 cites W2592929672 @default.
- W3166157844 cites W2621053731 @default.
- W3166157844 cites W2743374906 @default.
- W3166157844 cites W2769192984 @default.
- W3166157844 cites W2884561390 @default.
- W3166157844 cites W2888107234 @default.
- W3166157844 cites W2919115771 @default.
- W3166157844 cites W2949609742 @default.
- W3166157844 cites W2951965145 @default.
- W3166157844 cites W2955521425 @default.
- W3166157844 cites W2966535964 @default.
- W3166157844 cites W2972131290 @default.
- W3166157844 cites W2999435349 @default.
- W3166157844 cites W2999475074 @default.
- W3166157844 cites W3039859427 @default.
- W3166157844 cites W823218635 @default.
- W3166157844 cites W2888494493 @default.
- W3166157844 doi "https://doi.org/10.1016/j.media.2021.102128" @default.
- W3166157844 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34229189" @default.
- W3166157844 hasPublicationYear "2021" @default.
- W3166157844 type Work @default.
- W3166157844 sameAs 3166157844 @default.
- W3166157844 citedByCount "7" @default.
- W3166157844 countsByYear W31661578442020 @default.
- W3166157844 countsByYear W31661578442022 @default.
- W3166157844 countsByYear W31661578442023 @default.
- W3166157844 crossrefType "journal-article" @default.
- W3166157844 hasAuthorship W3166157844A5005314411 @default.
- W3166157844 hasAuthorship W3166157844A5015740141 @default.
- W3166157844 hasAuthorship W3166157844A5033605271 @default.
- W3166157844 hasAuthorship W3166157844A5039017039 @default.
- W3166157844 hasAuthorship W3166157844A5065703260 @default.
- W3166157844 hasAuthorship W3166157844A5078640037 @default.
- W3166157844 hasAuthorship W3166157844A5088306941 @default.
- W3166157844 hasConcept C107673813 @default.
- W3166157844 hasConcept C108583219 @default.
- W3166157844 hasConcept C115961682 @default.
- W3166157844 hasConcept C120665830 @default.
- W3166157844 hasConcept C121332964 @default.
- W3166157844 hasConcept C146849305 @default.
- W3166157844 hasConcept C147080431 @default.
- W3166157844 hasConcept C153180895 @default.
- W3166157844 hasConcept C154945302 @default.
- W3166157844 hasConcept C157286648 @default.
- W3166157844 hasConcept C15744967 @default.
- W3166157844 hasConcept C19417346 @default.
- W3166157844 hasConcept C2775936607 @default.
- W3166157844 hasConcept C31972630 @default.
- W3166157844 hasConcept C41008148 @default.
- W3166157844 hasConcept C49937458 @default.
- W3166157844 hasConcept C50644808 @default.
- W3166157844 hasConcept C52421305 @default.
- W3166157844 hasConcept C82142266 @default.
- W3166157844 hasConcept C99498987 @default.
- W3166157844 hasConceptScore W3166157844C107673813 @default.
- W3166157844 hasConceptScore W3166157844C108583219 @default.
- W3166157844 hasConceptScore W3166157844C115961682 @default.
- W3166157844 hasConceptScore W3166157844C120665830 @default.
- W3166157844 hasConceptScore W3166157844C121332964 @default.
- W3166157844 hasConceptScore W3166157844C146849305 @default.
- W3166157844 hasConceptScore W3166157844C147080431 @default.
- W3166157844 hasConceptScore W3166157844C153180895 @default.
- W3166157844 hasConceptScore W3166157844C154945302 @default.
- W3166157844 hasConceptScore W3166157844C157286648 @default.