Matches in SemOpenAlex for { <https://semopenalex.org/work/W3166177598> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3166177598 endingPage "1687" @default.
- W3166177598 startingPage "1680" @default.
- W3166177598 abstract "Hyperspectral Imaging is used to monitor the earth on basis of spectral continuous data ranges starting from visible to short wave infrared region of the electromagnetic spectrum. It enables the detailed identification and classification of minerals and land cover on basis of with improved spectral and spatial resolutions provides the opportunity to obtain accurate land-cover classification. Several challenges have been generated due to Hughes phenomenon (curse of dimensionality) and Quantification of land cover in urban area. In order to alleviate those problems, novel framework named as Deep learning framework on spectral and spatial properties on Landsat image has been proposed which composed of several techniques. Initially hyperspectral (HS) data exploitation model on identification of pure spectral signatures (endmembers) and their corresponding fractional abundances in each pixel of the HS data cube has been proposed. Feature reduction strategy based on principle component analysis has been employed to generate reduced dimensionality of the features on retaining the most useful information. The reduced features have been taken for the spectral analysis and spatial analysis using Multiobjective Discrete Spectral and Spatial optimized representation model through encompassing the sparse and low-rank structure on the spectral signature of pixels. Identification and mapping of the land cover classification categorized as agriculture area and bare land has been identified using spectral indices (end members). The spectral indices calculation provides the type of land cover on the pixel purity index and it classifies based on the spectral and spatial value using N finder algorithm. N finder Algorithm is a change vector analysis. Further Ensemble based method has been proposed in addition to generate diverse classification results and the discrete high correlation classifier method which can enhance the accuracy and diversity of a single classifier simultaneously. Finally an efficient agriculture land cover spectral evolution mapping has been proposed using Multivariate principle component analysis. It is considered as change detection method explores efficiently the context of images, which leads to a good tradeoff between wider receptive field and the use of Context towards mapping Agriculture Land cover spectral evolution. It computes the spectral correlation between two images on spectral similarity. It predicts the accurately on temporal changes of the earth surfaces. Experimental analysis has been carried out using Landsat-8 dataset to evaluating the performance of the proposed representative framework using available spectral indices against the state of art approaches. Proposed framework achieves accuracy of 99% on reflectance value against the different wavelength which superior with other existing classification approaches." @default.
- W3166177598 created "2021-06-22" @default.
- W3166177598 creator A5086854272 @default.
- W3166177598 date "2021-04-24" @default.
- W3166177598 modified "2023-09-24" @default.
- W3166177598 title "Deep learning framework based on Spectral and Spatial properties for Land-Cover Classification using Landsat Hyperspectral Images" @default.
- W3166177598 doi "https://doi.org/10.17762/turcomat.v12i9.3564" @default.
- W3166177598 hasPublicationYear "2021" @default.
- W3166177598 type Work @default.
- W3166177598 sameAs 3166177598 @default.
- W3166177598 citedByCount "0" @default.
- W3166177598 crossrefType "journal-article" @default.
- W3166177598 hasAuthorship W3166177598A5086854272 @default.
- W3166177598 hasConcept C111030470 @default.
- W3166177598 hasConcept C114700698 @default.
- W3166177598 hasConcept C124101348 @default.
- W3166177598 hasConcept C12426560 @default.
- W3166177598 hasConcept C127413603 @default.
- W3166177598 hasConcept C138885662 @default.
- W3166177598 hasConcept C147176958 @default.
- W3166177598 hasConcept C153180895 @default.
- W3166177598 hasConcept C154945302 @default.
- W3166177598 hasConcept C159078339 @default.
- W3166177598 hasConcept C159620131 @default.
- W3166177598 hasConcept C160633673 @default.
- W3166177598 hasConcept C176641082 @default.
- W3166177598 hasConcept C205649164 @default.
- W3166177598 hasConcept C2524010 @default.
- W3166177598 hasConcept C27438332 @default.
- W3166177598 hasConcept C2776401178 @default.
- W3166177598 hasConcept C2780648208 @default.
- W3166177598 hasConcept C33923547 @default.
- W3166177598 hasConcept C41008148 @default.
- W3166177598 hasConcept C41895202 @default.
- W3166177598 hasConcept C4792198 @default.
- W3166177598 hasConcept C62649853 @default.
- W3166177598 hasConcept C70518039 @default.
- W3166177598 hasConcept C78168278 @default.
- W3166177598 hasConceptScore W3166177598C111030470 @default.
- W3166177598 hasConceptScore W3166177598C114700698 @default.
- W3166177598 hasConceptScore W3166177598C124101348 @default.
- W3166177598 hasConceptScore W3166177598C12426560 @default.
- W3166177598 hasConceptScore W3166177598C127413603 @default.
- W3166177598 hasConceptScore W3166177598C138885662 @default.
- W3166177598 hasConceptScore W3166177598C147176958 @default.
- W3166177598 hasConceptScore W3166177598C153180895 @default.
- W3166177598 hasConceptScore W3166177598C154945302 @default.
- W3166177598 hasConceptScore W3166177598C159078339 @default.
- W3166177598 hasConceptScore W3166177598C159620131 @default.
- W3166177598 hasConceptScore W3166177598C160633673 @default.
- W3166177598 hasConceptScore W3166177598C176641082 @default.
- W3166177598 hasConceptScore W3166177598C205649164 @default.
- W3166177598 hasConceptScore W3166177598C2524010 @default.
- W3166177598 hasConceptScore W3166177598C27438332 @default.
- W3166177598 hasConceptScore W3166177598C2776401178 @default.
- W3166177598 hasConceptScore W3166177598C2780648208 @default.
- W3166177598 hasConceptScore W3166177598C33923547 @default.
- W3166177598 hasConceptScore W3166177598C41008148 @default.
- W3166177598 hasConceptScore W3166177598C41895202 @default.
- W3166177598 hasConceptScore W3166177598C4792198 @default.
- W3166177598 hasConceptScore W3166177598C62649853 @default.
- W3166177598 hasConceptScore W3166177598C70518039 @default.
- W3166177598 hasConceptScore W3166177598C78168278 @default.
- W3166177598 hasIssue "9" @default.
- W3166177598 hasLocation W31661775981 @default.
- W3166177598 hasOpenAccess W3166177598 @default.
- W3166177598 hasPrimaryLocation W31661775981 @default.
- W3166177598 hasRelatedWork W2024206511 @default.
- W3166177598 hasRelatedWork W2108009531 @default.
- W3166177598 hasRelatedWork W2148507918 @default.
- W3166177598 hasRelatedWork W2546633136 @default.
- W3166177598 hasRelatedWork W2567850567 @default.
- W3166177598 hasRelatedWork W2606991185 @default.
- W3166177598 hasRelatedWork W2754811957 @default.
- W3166177598 hasRelatedWork W2792742584 @default.
- W3166177598 hasRelatedWork W2800040034 @default.
- W3166177598 hasRelatedWork W2894850789 @default.
- W3166177598 hasRelatedWork W2901513387 @default.
- W3166177598 hasRelatedWork W2905565577 @default.
- W3166177598 hasRelatedWork W2967123741 @default.
- W3166177598 hasRelatedWork W3017370955 @default.
- W3166177598 hasRelatedWork W3022228321 @default.
- W3166177598 hasRelatedWork W3080452293 @default.
- W3166177598 hasRelatedWork W3101695545 @default.
- W3166177598 hasRelatedWork W3201182438 @default.
- W3166177598 hasRelatedWork W3202318041 @default.
- W3166177598 hasRelatedWork W2184354484 @default.
- W3166177598 hasVolume "12" @default.
- W3166177598 isParatext "false" @default.
- W3166177598 isRetracted "false" @default.
- W3166177598 magId "3166177598" @default.
- W3166177598 workType "article" @default.