Matches in SemOpenAlex for { <https://semopenalex.org/work/W3166202376> ?p ?o ?g. }
- W3166202376 endingPage "65" @default.
- W3166202376 startingPage "42" @default.
- W3166202376 abstract "Aspect-level sentiment analysis gives a detailed view of user opinions expressed towards each feature of a product. Aspect extraction is a challenging task in aspect-level sentiment analysis. Hence, several researchers worked on the problem of aspect extraction during the past decade. The authors begin this chapter with a brief introduction to aspect-level sentimental analysis, which covers the definition of key terms used in this chapter, and the authors also illustrate various subtasks of aspect-level sentiment analysis. The introductory section is followed by an explanation of the various feature learning methods like supervised, unsupervised, semi-supervised, etc. with a discussion regarding their merits and demerits. The authors compare the aspect extraction methods performance with respect to metrics and a detailed discussion on the merits and demerits of the approaches. They conclude the chapter with pointers to the unexplored problems in aspect-level sentiment analysis that may be beneficial to the researchers who wish to pursue work in this challenging and mature domain." @default.
- W3166202376 created "2021-06-22" @default.
- W3166202376 creator A5032680041 @default.
- W3166202376 creator A5090718537 @default.
- W3166202376 date "2021-01-01" @default.
- W3166202376 modified "2023-09-28" @default.
- W3166202376 title "A Survey on Aspect Extraction Approaches for Sentiment Analysis" @default.
- W3166202376 cites W1512129890 @default.
- W3166202376 cites W1555168845 @default.
- W3166202376 cites W1832693441 @default.
- W3166202376 cites W1977593555 @default.
- W3166202376 cites W1978394996 @default.
- W3166202376 cites W1985690171 @default.
- W3166202376 cites W1991927948 @default.
- W3166202376 cites W2022829918 @default.
- W3166202376 cites W2032378334 @default.
- W3166202376 cites W2037125742 @default.
- W3166202376 cites W2047676437 @default.
- W3166202376 cites W2049107599 @default.
- W3166202376 cites W2064675550 @default.
- W3166202376 cites W2071940869 @default.
- W3166202376 cites W2089468765 @default.
- W3166202376 cites W2100362224 @default.
- W3166202376 cites W2101769206 @default.
- W3166202376 cites W2112852886 @default.
- W3166202376 cites W2120814856 @default.
- W3166202376 cites W2131987814 @default.
- W3166202376 cites W2138605095 @default.
- W3166202376 cites W2138621811 @default.
- W3166202376 cites W2140156190 @default.
- W3166202376 cites W2147152072 @default.
- W3166202376 cites W2150098611 @default.
- W3166202376 cites W2150271850 @default.
- W3166202376 cites W2157331557 @default.
- W3166202376 cites W2165897980 @default.
- W3166202376 cites W2168196587 @default.
- W3166202376 cites W2170500434 @default.
- W3166202376 cites W2170534931 @default.
- W3166202376 cites W2189483458 @default.
- W3166202376 cites W2250214463 @default.
- W3166202376 cites W2251777082 @default.
- W3166202376 cites W2272031392 @default.
- W3166202376 cites W2296639515 @default.
- W3166202376 cites W2600278912 @default.
- W3166202376 cites W2739677115 @default.
- W3166202376 cites W2791707061 @default.
- W3166202376 cites W2919929668 @default.
- W3166202376 cites W2944413266 @default.
- W3166202376 cites W2970828926 @default.
- W3166202376 cites W2983396602 @default.
- W3166202376 cites W3037469642 @default.
- W3166202376 cites W319996907 @default.
- W3166202376 cites W4235505822 @default.
- W3166202376 cites W4254077482 @default.
- W3166202376 cites W640946346 @default.
- W3166202376 cites W2129546973 @default.
- W3166202376 cites W3016410346 @default.
- W3166202376 doi "https://doi.org/10.4018/978-1-7998-7371-6.ch003" @default.
- W3166202376 hasPublicationYear "2021" @default.
- W3166202376 type Work @default.
- W3166202376 sameAs 3166202376 @default.
- W3166202376 citedByCount "0" @default.
- W3166202376 crossrefType "book-chapter" @default.
- W3166202376 hasAuthorship W3166202376A5032680041 @default.
- W3166202376 hasAuthorship W3166202376A5090718537 @default.
- W3166202376 hasConcept C111919701 @default.
- W3166202376 hasConcept C127413603 @default.
- W3166202376 hasConcept C134306372 @default.
- W3166202376 hasConcept C138885662 @default.
- W3166202376 hasConcept C154945302 @default.
- W3166202376 hasConcept C201995342 @default.
- W3166202376 hasConcept C204321447 @default.
- W3166202376 hasConcept C2522767166 @default.
- W3166202376 hasConcept C2524010 @default.
- W3166202376 hasConcept C26517878 @default.
- W3166202376 hasConcept C2776401178 @default.
- W3166202376 hasConcept C2780129039 @default.
- W3166202376 hasConcept C2780451532 @default.
- W3166202376 hasConcept C33923547 @default.
- W3166202376 hasConcept C36503486 @default.
- W3166202376 hasConcept C38652104 @default.
- W3166202376 hasConcept C41008148 @default.
- W3166202376 hasConcept C41895202 @default.
- W3166202376 hasConcept C66402592 @default.
- W3166202376 hasConcept C90673727 @default.
- W3166202376 hasConceptScore W3166202376C111919701 @default.
- W3166202376 hasConceptScore W3166202376C127413603 @default.
- W3166202376 hasConceptScore W3166202376C134306372 @default.
- W3166202376 hasConceptScore W3166202376C138885662 @default.
- W3166202376 hasConceptScore W3166202376C154945302 @default.
- W3166202376 hasConceptScore W3166202376C201995342 @default.
- W3166202376 hasConceptScore W3166202376C204321447 @default.
- W3166202376 hasConceptScore W3166202376C2522767166 @default.
- W3166202376 hasConceptScore W3166202376C2524010 @default.
- W3166202376 hasConceptScore W3166202376C26517878 @default.
- W3166202376 hasConceptScore W3166202376C2776401178 @default.
- W3166202376 hasConceptScore W3166202376C2780129039 @default.
- W3166202376 hasConceptScore W3166202376C2780451532 @default.