Matches in SemOpenAlex for { <https://semopenalex.org/work/W3166223321> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3166223321 endingPage "524" @default.
- W3166223321 startingPage "519" @default.
- W3166223321 abstract "Predictive maintenance has become important for avoiding unplanned downtime of modern vehicles. With increasing functionality the exchanged data between Electronic Control Units (ECU) grows simultaneously rapidly. A large number of in-vehicle signals are provided for monitoring an aging process. Various components of a vehicle age due to their usage. This component aging is only visible in a certain number of in-vehicle signals. In this work, we present a signal selection method for in-vehicle signals in order to determine relevant signals to monitor and predict powertrain component aging of vehicles. Our application considers the aging of powertrain components with respect to clogging of structural components. We measure the component aging process in certain time intervals. Owing to this, unevenly spaced time series data is preprocessed to generate comparable in-vehicle data. First, we aggregate the data in certain intervals. Thus, the dynamic in-vehicle database is reduced which enables us to analyze the signals more efficiently. Secondly, we implement machine learning algorithms to generate a digital model of the measured aging process. With the help of Local Interpretable Model-Agnostic Explanations (LIME) the model gets interpretable. This allows us to extract the most relevant signals and to reduce the amount of processed data. Our results show that a certain number of in-vehicle signals are sufficient for predicting the aging process of the considered structural component. Consequently, our approach allows to reduce data transmission of in-vehicle signals with the goal of predictive maintenance." @default.
- W3166223321 created "2021-06-22" @default.
- W3166223321 creator A5041251898 @default.
- W3166223321 creator A5063020052 @default.
- W3166223321 creator A5064516890 @default.
- W3166223321 date "2019-12-05" @default.
- W3166223321 modified "2023-09-26" @default.
- W3166223321 title "Signal Pre-Selection for Monitoring and Prediction of Vehicle Powertrain Component Aging" @default.
- W3166223321 cites W1515077590 @default.
- W3166223321 cites W1529620516 @default.
- W3166223321 cites W1582616322 @default.
- W3166223321 cites W1973665104 @default.
- W3166223321 cites W2000079856 @default.
- W3166223321 cites W2000304567 @default.
- W3166223321 cites W2051480888 @default.
- W3166223321 cites W2066296745 @default.
- W3166223321 cites W2103730186 @default.
- W3166223321 cites W2106952242 @default.
- W3166223321 cites W2148130848 @default.
- W3166223321 cites W2282821441 @default.
- W3166223321 cites W2532475550 @default.
- W3166223321 cites W2780844125 @default.
- W3166223321 cites W2891948273 @default.
- W3166223321 cites W2910812205 @default.
- W3166223321 cites W822801274 @default.
- W3166223321 doi "https://doi.org/10.21122/2227-1031-2019-18-6-519-524" @default.
- W3166223321 hasPublicationYear "2019" @default.
- W3166223321 type Work @default.
- W3166223321 sameAs 3166223321 @default.
- W3166223321 citedByCount "0" @default.
- W3166223321 crossrefType "journal-article" @default.
- W3166223321 hasAuthorship W3166223321A5041251898 @default.
- W3166223321 hasAuthorship W3166223321A5063020052 @default.
- W3166223321 hasAuthorship W3166223321A5064516890 @default.
- W3166223321 hasBestOaLocation W31662233211 @default.
- W3166223321 hasConcept C111919701 @default.
- W3166223321 hasConcept C121332964 @default.
- W3166223321 hasConcept C127413603 @default.
- W3166223321 hasConcept C129727815 @default.
- W3166223321 hasConcept C144171764 @default.
- W3166223321 hasConcept C168167062 @default.
- W3166223321 hasConcept C180591934 @default.
- W3166223321 hasConcept C199360897 @default.
- W3166223321 hasConcept C2779843651 @default.
- W3166223321 hasConcept C41008148 @default.
- W3166223321 hasConcept C76047896 @default.
- W3166223321 hasConcept C78519656 @default.
- W3166223321 hasConcept C79403827 @default.
- W3166223321 hasConcept C97355855 @default.
- W3166223321 hasConcept C98045186 @default.
- W3166223321 hasConceptScore W3166223321C111919701 @default.
- W3166223321 hasConceptScore W3166223321C121332964 @default.
- W3166223321 hasConceptScore W3166223321C127413603 @default.
- W3166223321 hasConceptScore W3166223321C129727815 @default.
- W3166223321 hasConceptScore W3166223321C144171764 @default.
- W3166223321 hasConceptScore W3166223321C168167062 @default.
- W3166223321 hasConceptScore W3166223321C180591934 @default.
- W3166223321 hasConceptScore W3166223321C199360897 @default.
- W3166223321 hasConceptScore W3166223321C2779843651 @default.
- W3166223321 hasConceptScore W3166223321C41008148 @default.
- W3166223321 hasConceptScore W3166223321C76047896 @default.
- W3166223321 hasConceptScore W3166223321C78519656 @default.
- W3166223321 hasConceptScore W3166223321C79403827 @default.
- W3166223321 hasConceptScore W3166223321C97355855 @default.
- W3166223321 hasConceptScore W3166223321C98045186 @default.
- W3166223321 hasIssue "6" @default.
- W3166223321 hasLocation W31662233211 @default.
- W3166223321 hasLocation W31662233212 @default.
- W3166223321 hasLocation W31662233213 @default.
- W3166223321 hasOpenAccess W3166223321 @default.
- W3166223321 hasPrimaryLocation W31662233211 @default.
- W3166223321 hasRelatedWork W151116300 @default.
- W3166223321 hasRelatedWork W1890608159 @default.
- W3166223321 hasRelatedWork W1967811507 @default.
- W3166223321 hasRelatedWork W1972664798 @default.
- W3166223321 hasRelatedWork W2065330806 @default.
- W3166223321 hasRelatedWork W2353386969 @default.
- W3166223321 hasRelatedWork W2372620404 @default.
- W3166223321 hasRelatedWork W2943176278 @default.
- W3166223321 hasRelatedWork W3032418968 @default.
- W3166223321 hasRelatedWork W51139308 @default.
- W3166223321 hasVolume "18" @default.
- W3166223321 isParatext "false" @default.
- W3166223321 isRetracted "false" @default.
- W3166223321 magId "3166223321" @default.
- W3166223321 workType "article" @default.