Matches in SemOpenAlex for { <https://semopenalex.org/work/W3166236594> ?p ?o ?g. }
Showing items 1 to 46 of
46
with 100 items per page.
- W3166236594 endingPage "180" @default.
- W3166236594 startingPage "157" @default.
- W3166236594 abstract "Modern public health faces substantial challenges toward predicting exponential rise of communicable and non-communicable diseases (NCDs), unprecedented health crises, lifestyle risk factors and environmental health hazards to populations worldwide. Public health physicians require new and efficient models and resources to tackle, detect and combat infectious disease outbreaks, rare diseases, lifestyle risk factors, mental health repercussions and maternal and child health challenges which not only impacts the overall human health system but also escalates the country’s economic burden and citizen’s quality of life. The integration of big health data, epidemiologic informatics and computational intelligence approaches has created new hopes for people and policy advocates to diagnose and predict diseases at an early stage to prevent further complications, rise in hospital admissions or increased morbidities and mortalities. This chapter will systematically appraise the application of deep learning approaches (a subset of machine learning) and big public health data utilization in predicting diseases across major domains in public health, particularly NCDs, communicable diseases, socio-behavioral medicine, maternal and child health and environmental health." @default.
- W3166236594 created "2021-06-22" @default.
- W3166236594 creator A5046589413 @default.
- W3166236594 date "2021-06-01" @default.
- W3166236594 modified "2023-09-25" @default.
- W3166236594 title "Deep Learning for Disease Prediction in Public Health" @default.
- W3166236594 doi "https://doi.org/10.1201/9780367855611-8" @default.
- W3166236594 hasPublicationYear "2021" @default.
- W3166236594 type Work @default.
- W3166236594 sameAs 3166236594 @default.
- W3166236594 citedByCount "0" @default.
- W3166236594 crossrefType "book-chapter" @default.
- W3166236594 hasAuthorship W3166236594A5046589413 @default.
- W3166236594 hasConcept C108583219 @default.
- W3166236594 hasConcept C138816342 @default.
- W3166236594 hasConcept C142724271 @default.
- W3166236594 hasConcept C154945302 @default.
- W3166236594 hasConcept C2779134260 @default.
- W3166236594 hasConcept C41008148 @default.
- W3166236594 hasConcept C71924100 @default.
- W3166236594 hasConceptScore W3166236594C108583219 @default.
- W3166236594 hasConceptScore W3166236594C138816342 @default.
- W3166236594 hasConceptScore W3166236594C142724271 @default.
- W3166236594 hasConceptScore W3166236594C154945302 @default.
- W3166236594 hasConceptScore W3166236594C2779134260 @default.
- W3166236594 hasConceptScore W3166236594C41008148 @default.
- W3166236594 hasConceptScore W3166236594C71924100 @default.
- W3166236594 hasLocation W31662365941 @default.
- W3166236594 hasOpenAccess W3166236594 @default.
- W3166236594 hasPrimaryLocation W31662365941 @default.
- W3166236594 hasRelatedWork W2126887587 @default.
- W3166236594 hasRelatedWork W2731899572 @default.
- W3166236594 hasRelatedWork W2939353110 @default.
- W3166236594 hasRelatedWork W2948658236 @default.
- W3166236594 hasRelatedWork W3009238340 @default.
- W3166236594 hasRelatedWork W3215138031 @default.
- W3166236594 hasRelatedWork W4312962853 @default.
- W3166236594 hasRelatedWork W4321369474 @default.
- W3166236594 hasRelatedWork W4327774331 @default.
- W3166236594 hasRelatedWork W4360585206 @default.
- W3166236594 isParatext "false" @default.
- W3166236594 isRetracted "false" @default.
- W3166236594 magId "3166236594" @default.
- W3166236594 workType "book-chapter" @default.