Matches in SemOpenAlex for { <https://semopenalex.org/work/W3166288657> ?p ?o ?g. }
- W3166288657 endingPage "106584" @default.
- W3166288657 startingPage "106584" @default.
- W3166288657 abstract "• An Artificial Neural Network model is developed for seismic spectral damage. • A multi-objective Genetic Programming is implemented to formulate the problem. • Both structural and earthquake features have been included in the proposed models. • Six performance metrics have been employed for validation and comparison purposes. • Benchmarking with an existing method shows the superiority of the proposed models. Predicting seismic damage spectra, capturing both structural and earthquake features, is useful in performance-based seismic design and quantifying the potential seismic damage of structures. The objective of this paper is to accurately predict the seismic damage spectra using computational intelligence methods. For this purpose, an inelastic single-degree-of-freedom system subjected to a set of earthquake ground motion records is used to compute the (exact) spectral damage. The Park-Ang damage index is used to quantify the seismic damage. Both structural and earthquake features are involved in the prediction models where multi-gene genetic programming (MGGP) and artificial neural networks (ANNs) are applied. Common performance metrics were used to assess the models developed for seismic damage spectra, and indicated that their accuracy was higher than a corresponding model in the literature. Although the performance metrics revealed that the ANN model is more accurate than the MGGP model, the explicit MGGP-based mathematical model renders it more practical in quantifying the potential seismic damage of structures." @default.
- W3166288657 created "2021-06-22" @default.
- W3166288657 creator A5028840063 @default.
- W3166288657 creator A5037482104 @default.
- W3166288657 creator A5060724798 @default.
- W3166288657 creator A5064832057 @default.
- W3166288657 date "2021-09-01" @default.
- W3166288657 modified "2023-10-09" @default.
- W3166288657 title "Prediction of seismic damage spectra using computational intelligence methods" @default.
- W3166288657 cites W1810120829 @default.
- W3166288657 cites W1967065177 @default.
- W3166288657 cites W1968448133 @default.
- W3166288657 cites W1979630897 @default.
- W3166288657 cites W1985740301 @default.
- W3166288657 cites W1989116101 @default.
- W3166288657 cites W1995341919 @default.
- W3166288657 cites W1999978517 @default.
- W3166288657 cites W2011730493 @default.
- W3166288657 cites W2014712737 @default.
- W3166288657 cites W2017244636 @default.
- W3166288657 cites W2019030809 @default.
- W3166288657 cites W2024404845 @default.
- W3166288657 cites W2025617453 @default.
- W3166288657 cites W2037842564 @default.
- W3166288657 cites W2040622309 @default.
- W3166288657 cites W2046053713 @default.
- W3166288657 cites W2049690837 @default.
- W3166288657 cites W2060477610 @default.
- W3166288657 cites W2078669451 @default.
- W3166288657 cites W2086268480 @default.
- W3166288657 cites W2086877268 @default.
- W3166288657 cites W2092575092 @default.
- W3166288657 cites W2096185550 @default.
- W3166288657 cites W2106357098 @default.
- W3166288657 cites W2110013894 @default.
- W3166288657 cites W2112287539 @default.
- W3166288657 cites W2126105956 @default.
- W3166288657 cites W2163924137 @default.
- W3166288657 cites W2280536766 @default.
- W3166288657 cites W2311053017 @default.
- W3166288657 cites W2469450092 @default.
- W3166288657 cites W2597001281 @default.
- W3166288657 cites W2792294038 @default.
- W3166288657 cites W2796707771 @default.
- W3166288657 cites W2799385530 @default.
- W3166288657 cites W2803721470 @default.
- W3166288657 cites W2806307058 @default.
- W3166288657 cites W2894547080 @default.
- W3166288657 cites W2899138145 @default.
- W3166288657 cites W2930890426 @default.
- W3166288657 cites W2982520518 @default.
- W3166288657 cites W3013665076 @default.
- W3166288657 cites W608402566 @default.
- W3166288657 doi "https://doi.org/10.1016/j.compstruc.2021.106584" @default.
- W3166288657 hasPublicationYear "2021" @default.
- W3166288657 type Work @default.
- W3166288657 sameAs 3166288657 @default.
- W3166288657 citedByCount "10" @default.
- W3166288657 countsByYear W31662886572022 @default.
- W3166288657 countsByYear W31662886572023 @default.
- W3166288657 crossrefType "journal-article" @default.
- W3166288657 hasAuthorship W3166288657A5028840063 @default.
- W3166288657 hasAuthorship W3166288657A5037482104 @default.
- W3166288657 hasAuthorship W3166288657A5060724798 @default.
- W3166288657 hasAuthorship W3166288657A5064832057 @default.
- W3166288657 hasConcept C121332964 @default.
- W3166288657 hasConcept C127313418 @default.
- W3166288657 hasConcept C127413603 @default.
- W3166288657 hasConcept C1276947 @default.
- W3166288657 hasConcept C165205528 @default.
- W3166288657 hasConcept C41008148 @default.
- W3166288657 hasConcept C4839761 @default.
- W3166288657 hasConcept C66938386 @default.
- W3166288657 hasConceptScore W3166288657C121332964 @default.
- W3166288657 hasConceptScore W3166288657C127313418 @default.
- W3166288657 hasConceptScore W3166288657C127413603 @default.
- W3166288657 hasConceptScore W3166288657C1276947 @default.
- W3166288657 hasConceptScore W3166288657C165205528 @default.
- W3166288657 hasConceptScore W3166288657C41008148 @default.
- W3166288657 hasConceptScore W3166288657C4839761 @default.
- W3166288657 hasConceptScore W3166288657C66938386 @default.
- W3166288657 hasLocation W31662886571 @default.
- W3166288657 hasOpenAccess W3166288657 @default.
- W3166288657 hasPrimaryLocation W31662886571 @default.
- W3166288657 hasRelatedWork W1968702681 @default.
- W3166288657 hasRelatedWork W2031573214 @default.
- W3166288657 hasRelatedWork W2092739438 @default.
- W3166288657 hasRelatedWork W2371527909 @default.
- W3166288657 hasRelatedWork W2772196783 @default.
- W3166288657 hasRelatedWork W2899084033 @default.
- W3166288657 hasRelatedWork W2904667922 @default.
- W3166288657 hasRelatedWork W3016255354 @default.
- W3166288657 hasRelatedWork W3036915269 @default.
- W3166288657 hasRelatedWork W3109652668 @default.
- W3166288657 hasVolume "253" @default.
- W3166288657 isParatext "false" @default.
- W3166288657 isRetracted "false" @default.
- W3166288657 magId "3166288657" @default.