Matches in SemOpenAlex for { <https://semopenalex.org/work/W3166334489> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3166334489 abstract "There is an increasing interest in adapting the deep learning models into neuroimaging techniques such as electroencephalogram (EEG). However, one of the fundamental problems in deep learning models is the interpretability of the learned representations. Even though many interpretability models exist for computer vision applications, adapting those methods for deep learning using EEG is still a challenge. In this regard, we propose a novel computational approach to increase the interpretability of results from deep learning algorithm using two popular saliency detection algorithms: integrated gradients and ablation attribution method. The method provides the importance of values across different EEG frequency bands (Theta, Alpha, Beta, Gamma) and across different electrode locations. We can use these importance values to recognize which electrode and frequency bands are relevant for a particular classification problem. We demonstrate the proposed method's efficacy in a physical human-robot co-manipulation experiment where a convolution neural network (CNN) model is trained to classify the user's mental workload using raw EEG recordings. The experiment is predominantly visuospatial and motor control-oriented. The proposed method found the Gamma and Beta frequency band across parietal and occipital regions to be important, which are indeed associated with visuospatial processing and sensory integration." @default.
- W3166334489 created "2021-06-22" @default.
- W3166334489 creator A5019769688 @default.
- W3166334489 creator A5082276481 @default.
- W3166334489 date "2021-05-04" @default.
- W3166334489 modified "2023-09-27" @default.
- W3166334489 title "Extracting Interpretable EEG Features from a Deep Learning Model to Assess the Quality of Human-Robot Co-manipulation" @default.
- W3166334489 cites W2076347184 @default.
- W3166334489 cites W2592929672 @default.
- W3166334489 cites W2594633041 @default.
- W3166334489 cites W2741907166 @default.
- W3166334489 cites W2903896358 @default.
- W3166334489 cites W2944170161 @default.
- W3166334489 cites W2958089299 @default.
- W3166334489 cites W2963355311 @default.
- W3166334489 cites W2963374347 @default.
- W3166334489 cites W2994832535 @default.
- W3166334489 cites W2997428643 @default.
- W3166334489 cites W3015470262 @default.
- W3166334489 cites W3039459944 @default.
- W3166334489 cites W3093549784 @default.
- W3166334489 cites W55018851 @default.
- W3166334489 doi "https://doi.org/10.1109/ner49283.2021.9441134" @default.
- W3166334489 hasPublicationYear "2021" @default.
- W3166334489 type Work @default.
- W3166334489 sameAs 3166334489 @default.
- W3166334489 citedByCount "0" @default.
- W3166334489 crossrefType "proceedings-article" @default.
- W3166334489 hasAuthorship W3166334489A5019769688 @default.
- W3166334489 hasAuthorship W3166334489A5082276481 @default.
- W3166334489 hasConcept C108583219 @default.
- W3166334489 hasConcept C119857082 @default.
- W3166334489 hasConcept C153180895 @default.
- W3166334489 hasConcept C154945302 @default.
- W3166334489 hasConcept C15744967 @default.
- W3166334489 hasConcept C169760540 @default.
- W3166334489 hasConcept C2781067378 @default.
- W3166334489 hasConcept C2910144760 @default.
- W3166334489 hasConcept C41008148 @default.
- W3166334489 hasConcept C45347329 @default.
- W3166334489 hasConcept C50644808 @default.
- W3166334489 hasConcept C522805319 @default.
- W3166334489 hasConcept C81363708 @default.
- W3166334489 hasConceptScore W3166334489C108583219 @default.
- W3166334489 hasConceptScore W3166334489C119857082 @default.
- W3166334489 hasConceptScore W3166334489C153180895 @default.
- W3166334489 hasConceptScore W3166334489C154945302 @default.
- W3166334489 hasConceptScore W3166334489C15744967 @default.
- W3166334489 hasConceptScore W3166334489C169760540 @default.
- W3166334489 hasConceptScore W3166334489C2781067378 @default.
- W3166334489 hasConceptScore W3166334489C2910144760 @default.
- W3166334489 hasConceptScore W3166334489C41008148 @default.
- W3166334489 hasConceptScore W3166334489C45347329 @default.
- W3166334489 hasConceptScore W3166334489C50644808 @default.
- W3166334489 hasConceptScore W3166334489C522805319 @default.
- W3166334489 hasConceptScore W3166334489C81363708 @default.
- W3166334489 hasLocation W31663344891 @default.
- W3166334489 hasOpenAccess W3166334489 @default.
- W3166334489 hasPrimaryLocation W31663344891 @default.
- W3166334489 hasRelatedWork W10202958 @default.
- W3166334489 hasRelatedWork W10412386 @default.
- W3166334489 hasRelatedWork W12336802 @default.
- W3166334489 hasRelatedWork W12793662 @default.
- W3166334489 hasRelatedWork W4136762 @default.
- W3166334489 hasRelatedWork W7120470 @default.
- W3166334489 hasRelatedWork W7303821 @default.
- W3166334489 hasRelatedWork W8657122 @default.
- W3166334489 hasRelatedWork W9190101 @default.
- W3166334489 hasRelatedWork W9463276 @default.
- W3166334489 isParatext "false" @default.
- W3166334489 isRetracted "false" @default.
- W3166334489 magId "3166334489" @default.
- W3166334489 workType "article" @default.