Matches in SemOpenAlex for { <https://semopenalex.org/work/W3166386823> ?p ?o ?g. }
- W3166386823 endingPage "582" @default.
- W3166386823 startingPage "571" @default.
- W3166386823 abstract "The Vector AutoRegressive Moving Average (VARMA) model is fundamental to the theory of multivariate time series; however, identifiability issues have led practitioners to abandon it in favor of the simpler but more restrictive Vector AutoRegressive (VAR) model. We narrow this gap with a new optimization-based approach to VARMA identification built upon the principle of parsimony. Among all equivalent data-generating models, we use convex optimization to seek the parameterization that is simplest in a certain sense. A user-specified strongly convex penalty is used to measure model simplicity, and that same penalty is then used to define an estimator that can be efficiently computed. We establish consistency of our estimators in a double-asymptotic regime. Our non-asymptotic error bound analysis accommodates both model specification and parameter estimation steps, a feature that is crucial for studying large-scale VARMA algorithms. Our analysis also provides new results on penalized estimation of infinite-order VAR, and elastic net regression under a singular covariance structure of regressors, which may be of independent interest. We illustrate the advantage of our method over VAR alternatives on three real data examples." @default.
- W3166386823 created "2021-06-22" @default.
- W3166386823 creator A5004126850 @default.
- W3166386823 creator A5048951079 @default.
- W3166386823 creator A5051412963 @default.
- W3166386823 creator A5076854744 @default.
- W3166386823 date "2021-08-09" @default.
- W3166386823 modified "2023-10-18" @default.
- W3166386823 title "Sparse Identification and Estimation of Large-Scale Vector AutoRegressive Moving Averages" @default.
- W3166386823 cites W1482953311 @default.
- W3166386823 cites W1544856843 @default.
- W3166386823 cites W157958861 @default.
- W3166386823 cites W1859880334 @default.
- W3166386823 cites W1875396108 @default.
- W3166386823 cites W1966731843 @default.
- W3166386823 cites W1977809099 @default.
- W3166386823 cites W2004301780 @default.
- W3166386823 cites W2025046611 @default.
- W3166386823 cites W2025140783 @default.
- W3166386823 cites W2035435250 @default.
- W3166386823 cites W2038804116 @default.
- W3166386823 cites W2046563644 @default.
- W3166386823 cites W2051641963 @default.
- W3166386823 cites W2056186894 @default.
- W3166386823 cites W206177690 @default.
- W3166386823 cites W2089155713 @default.
- W3166386823 cites W2097360283 @default.
- W3166386823 cites W2098588523 @default.
- W3166386823 cites W2099210013 @default.
- W3166386823 cites W2118088123 @default.
- W3166386823 cites W2119515738 @default.
- W3166386823 cites W2135951012 @default.
- W3166386823 cites W2142635246 @default.
- W3166386823 cites W2152204644 @default.
- W3166386823 cites W2153303375 @default.
- W3166386823 cites W2185330090 @default.
- W3166386823 cites W2274029167 @default.
- W3166386823 cites W2330166836 @default.
- W3166386823 cites W2558723476 @default.
- W3166386823 cites W2770058355 @default.
- W3166386823 cites W2787894218 @default.
- W3166386823 cites W2907768713 @default.
- W3166386823 cites W2947626232 @default.
- W3166386823 cites W2962716677 @default.
- W3166386823 cites W3020982786 @default.
- W3166386823 cites W3022446978 @default.
- W3166386823 cites W3099550161 @default.
- W3166386823 cites W3105322001 @default.
- W3166386823 cites W3121553976 @default.
- W3166386823 cites W3124325636 @default.
- W3166386823 cites W368297373 @default.
- W3166386823 cites W4206563096 @default.
- W3166386823 cites W4291327732 @default.
- W3166386823 cites W4292963524 @default.
- W3166386823 cites W4294541781 @default.
- W3166386823 doi "https://doi.org/10.1080/01621459.2021.1942013" @default.
- W3166386823 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37346226" @default.
- W3166386823 hasPublicationYear "2021" @default.
- W3166386823 type Work @default.
- W3166386823 sameAs 3166386823 @default.
- W3166386823 citedByCount "3" @default.
- W3166386823 countsByYear W31663868232021 @default.
- W3166386823 countsByYear W31663868232022 @default.
- W3166386823 countsByYear W31663868232023 @default.
- W3166386823 crossrefType "journal-article" @default.
- W3166386823 hasAuthorship W3166386823A5004126850 @default.
- W3166386823 hasAuthorship W3166386823A5048951079 @default.
- W3166386823 hasAuthorship W3166386823A5051412963 @default.
- W3166386823 hasAuthorship W3166386823A5076854744 @default.
- W3166386823 hasBestOaLocation W31663868232 @default.
- W3166386823 hasConcept C105795698 @default.
- W3166386823 hasConcept C119047807 @default.
- W3166386823 hasConcept C122770356 @default.
- W3166386823 hasConcept C126255220 @default.
- W3166386823 hasConcept C159877910 @default.
- W3166386823 hasConcept C178650346 @default.
- W3166386823 hasConcept C185429906 @default.
- W3166386823 hasConcept C28826006 @default.
- W3166386823 hasConcept C33923547 @default.
- W3166386823 hasConcept C74883015 @default.
- W3166386823 hasConceptScore W3166386823C105795698 @default.
- W3166386823 hasConceptScore W3166386823C119047807 @default.
- W3166386823 hasConceptScore W3166386823C122770356 @default.
- W3166386823 hasConceptScore W3166386823C126255220 @default.
- W3166386823 hasConceptScore W3166386823C159877910 @default.
- W3166386823 hasConceptScore W3166386823C178650346 @default.
- W3166386823 hasConceptScore W3166386823C185429906 @default.
- W3166386823 hasConceptScore W3166386823C28826006 @default.
- W3166386823 hasConceptScore W3166386823C33923547 @default.
- W3166386823 hasConceptScore W3166386823C74883015 @default.
- W3166386823 hasFunder F4320306076 @default.
- W3166386823 hasFunder F4320306115 @default.
- W3166386823 hasFunder F4320308078 @default.
- W3166386823 hasFunder F4320309237 @default.
- W3166386823 hasFunder F4320320300 @default.
- W3166386823 hasFunder F4320332161 @default.
- W3166386823 hasIssue "541" @default.
- W3166386823 hasLocation W31663868231 @default.