Matches in SemOpenAlex for { <https://semopenalex.org/work/W3166398908> ?p ?o ?g. }
- W3166398908 endingPage "103998" @default.
- W3166398908 startingPage "103998" @default.
- W3166398908 abstract "Dissolved chemical speciation of metals in natural waters encompasses a wide range of inorganic and organic compounds including metal organic ligand complexes, ML. Because of the different filters used, “dissolved” speciation can range from simple metal-ligand complexes with an average size of about 0.66 nm (mass of <3 k-daltons) to nanoparticles of 1 to 100 nm to colloidal forms that are 10 to 200–400 nm in size. Strong metal-ligand, ML, complexes are normally considered to be in <1 nm size fraction. Over the last 3 decades, competitive ligand exchange – cathodic stripping voltammetry (CLE-CSV) titrations have been the method of choice to study complexation. These titrations primarily give information on the excess ligands in the sample rather than the actual ligand in MLunknown complexes because they require adding metal to the sample. Thus, metal-ligand CLE-CSV titrations do not provide much information on the actual ligand present in MLunknown. However, pseudovoltammetry provides the thermodynamic stability constant, Ktherm, for Zn, Cu, Cd and Pb as the MLunknown complex is destroyed by reduction at the Hg electrode to form metal(Hg). Pseudovoltammetry does not require the addition of any reagents to the sample, but cannot be performed for ions such as Fe(III) [and Mn(III)] because reduction of the ion results in the reduction of the metal ion in the complex without destroying MLunknown. For these ions, kinetic experiments to recover the metal in the ML complex can provide information on the MLunknown dissociation rate constant, kd, and the conditional equilibrium constant, KcondML′. In these kinetic experiments, a competitive ligand (Lcomp) is added to the sample, and over time the MLcomp complex is measured by CSV. If all the metal in MLunknown is recovered, kd of MLunknown can be determined. If only a portion of the metal in MLunknown is recovered, equilibrium is achieved and KcondML′ as well as kd can be determined in a single experiment; kf can then be calculated. We describe how these methods can be used to determine information on the actual MLunknown complex. We show that 7 thermodynamic, kinetic and speciation parameters (Ktherm, KcondML′, KcondM′L′, kf, kd, αM′, αL′) for MLunknown complexes can be derived from a combination of two of these experiments. The approaches described here are useful to determine these parameters for known ML complexes once a ligand has been isolated by advanced separation methods (e.g., LC-MS) and reacted with a metal of interest." @default.
- W3166398908 created "2021-06-22" @default.
- W3166398908 creator A5018997475 @default.
- W3166398908 creator A5019750671 @default.
- W3166398908 creator A5044544405 @default.
- W3166398908 creator A5066950847 @default.
- W3166398908 creator A5079497193 @default.
- W3166398908 date "2021-08-01" @default.
- W3166398908 modified "2023-09-27" @default.
- W3166398908 title "Determination of ambient dissolved metal ligand complexation parameters via kinetics and pseudo-voltammetry experiments" @default.
- W3166398908 cites W1516041000 @default.
- W3166398908 cites W1938868413 @default.
- W3166398908 cites W1968028266 @default.
- W3166398908 cites W1968415073 @default.
- W3166398908 cites W1974578308 @default.
- W3166398908 cites W1978246686 @default.
- W3166398908 cites W1979391063 @default.
- W3166398908 cites W1987172133 @default.
- W3166398908 cites W2004863845 @default.
- W3166398908 cites W2007886238 @default.
- W3166398908 cites W2008265007 @default.
- W3166398908 cites W2014077506 @default.
- W3166398908 cites W2015263177 @default.
- W3166398908 cites W2020704651 @default.
- W3166398908 cites W2022723077 @default.
- W3166398908 cites W2024486172 @default.
- W3166398908 cites W2025700565 @default.
- W3166398908 cites W2027692707 @default.
- W3166398908 cites W2027773618 @default.
- W3166398908 cites W2028446963 @default.
- W3166398908 cites W2028587365 @default.
- W3166398908 cites W2037222220 @default.
- W3166398908 cites W2037496744 @default.
- W3166398908 cites W2039580629 @default.
- W3166398908 cites W2039868569 @default.
- W3166398908 cites W2046298462 @default.
- W3166398908 cites W2049371392 @default.
- W3166398908 cites W2050848626 @default.
- W3166398908 cites W2051574029 @default.
- W3166398908 cites W2054434393 @default.
- W3166398908 cites W2068559689 @default.
- W3166398908 cites W2074352125 @default.
- W3166398908 cites W2076032696 @default.
- W3166398908 cites W2076100780 @default.
- W3166398908 cites W2076236814 @default.
- W3166398908 cites W2081946175 @default.
- W3166398908 cites W2087898074 @default.
- W3166398908 cites W2090219574 @default.
- W3166398908 cites W2090539247 @default.
- W3166398908 cites W2091004875 @default.
- W3166398908 cites W2096213066 @default.
- W3166398908 cites W2101942336 @default.
- W3166398908 cites W2105648452 @default.
- W3166398908 cites W2111087627 @default.
- W3166398908 cites W2113837822 @default.
- W3166398908 cites W2115916970 @default.
- W3166398908 cites W2138332575 @default.
- W3166398908 cites W2141208946 @default.
- W3166398908 cites W2148339342 @default.
- W3166398908 cites W2150931933 @default.
- W3166398908 cites W2158643167 @default.
- W3166398908 cites W2170089944 @default.
- W3166398908 cites W2170157843 @default.
- W3166398908 cites W2315583640 @default.
- W3166398908 cites W2315972660 @default.
- W3166398908 cites W2316853726 @default.
- W3166398908 cites W2409927461 @default.
- W3166398908 cites W2469493724 @default.
- W3166398908 cites W2474323081 @default.
- W3166398908 cites W2792599976 @default.
- W3166398908 cites W2896218600 @default.
- W3166398908 cites W2899551831 @default.
- W3166398908 cites W2916382552 @default.
- W3166398908 cites W2923028656 @default.
- W3166398908 cites W4211027294 @default.
- W3166398908 cites W4255591011 @default.
- W3166398908 cites W2758439152 @default.
- W3166398908 doi "https://doi.org/10.1016/j.marchem.2021.103998" @default.
- W3166398908 hasPublicationYear "2021" @default.
- W3166398908 type Work @default.
- W3166398908 sameAs 3166398908 @default.
- W3166398908 citedByCount "6" @default.
- W3166398908 countsByYear W31663989082021 @default.
- W3166398908 countsByYear W31663989082022 @default.
- W3166398908 crossrefType "journal-article" @default.
- W3166398908 hasAuthorship W3166398908A5018997475 @default.
- W3166398908 hasAuthorship W3166398908A5019750671 @default.
- W3166398908 hasAuthorship W3166398908A5044544405 @default.
- W3166398908 hasAuthorship W3166398908A5066950847 @default.
- W3166398908 hasAuthorship W3166398908A5079497193 @default.
- W3166398908 hasBestOaLocation W31663989081 @default.
- W3166398908 hasConcept C102931765 @default.
- W3166398908 hasConcept C113196181 @default.
- W3166398908 hasConcept C116569031 @default.
- W3166398908 hasConcept C145148216 @default.
- W3166398908 hasConcept C147789679 @default.
- W3166398908 hasConcept C168191866 @default.
- W3166398908 hasConcept C170493617 @default.