Matches in SemOpenAlex for { <https://semopenalex.org/work/W3166456209> ?p ?o ?g. }
- W3166456209 endingPage "926" @default.
- W3166456209 startingPage "917" @default.
- W3166456209 abstract "Colorectal cancer (CRC) represents one of the common malignancies of the gastrointestinal tract. The CRC incidence and mortality rates can be significantly reduced through early detection and resection of the precursor lesions, also known the colorectal polyps. However, such polyps can be missed during manual colonoscopy screening. With recent advances in artificial intelligence, numerous computer-aided diagnosis (CAD) methods have been proposed for colonoscopy applications. In particular, deep learning algorithms have been recently designed to incorporate sophisticated attention mechanisms into convolutional blocks and hence demonstrate a great potential for enhancing the performance of convolutional neural networks (CNNs). Nevertheless, most current deep learning techniques suffer from the high model complexity and excessive computational burden. In this paper, we introduce a deep learning approach for colorectal polyp detection and segmentation. Specifically, we propose a new shuffle efficient channel attention network (sECANet) with no dimensionality reduction. This network can be exploited to learn effective channel attention by obtaining cross-channel interactions. A total of 2112 manually-labeled images were collected from 1197 patients in a local hospital using colonoscopy screening. Additional data samples were collected from the CVC-ClinicDB, the ETIS-Larib Polyp DB and the Kvasir-SEG dataset. The captured images were partitioned into 3590 training images and 330 testing images, and each image was labeled as a polyp or non-polyp image. We assessed our framework on the testing images and achieved a precision of 94.9%, a recall of 96.9%, a F1 score of 95.9%, and a F2 score of 96.5%. In conclusion, our proposed framework has a great potential of assisting endoscopists in tracking polyps during colonoscopy and therefore performing early and timely resection of such polyps before they evolve into invasive cancer types." @default.
- W3166456209 created "2021-06-22" @default.
- W3166456209 creator A5019316915 @default.
- W3166456209 creator A5026552070 @default.
- W3166456209 creator A5040270498 @default.
- W3166456209 creator A5047100956 @default.
- W3166456209 creator A5050501022 @default.
- W3166456209 creator A5067148054 @default.
- W3166456209 creator A5073196579 @default.
- W3166456209 creator A5088776607 @default.
- W3166456209 creator A5091803837 @default.
- W3166456209 date "2022-01-01" @default.
- W3166456209 modified "2023-10-01" @default.
- W3166456209 title "Automatic polyp detection and segmentation using shuffle efficient channel attention network" @default.
- W3166456209 cites W1584308190 @default.
- W3166456209 cites W2008359794 @default.
- W3166456209 cites W2021088830 @default.
- W3166456209 cites W2048371358 @default.
- W3166456209 cites W2282971418 @default.
- W3166456209 cites W2285968993 @default.
- W3166456209 cites W2401679044 @default.
- W3166456209 cites W2541669745 @default.
- W3166456209 cites W2549139847 @default.
- W3166456209 cites W2560014990 @default.
- W3166456209 cites W2560023338 @default.
- W3166456209 cites W2618530766 @default.
- W3166456209 cites W2806070179 @default.
- W3166456209 cites W2884985635 @default.
- W3166456209 cites W2894010682 @default.
- W3166456209 cites W2901450034 @default.
- W3166456209 cites W2928165649 @default.
- W3166456209 cites W2963125010 @default.
- W3166456209 cites W2963420686 @default.
- W3166456209 cites W2964309882 @default.
- W3166456209 cites W2973731007 @default.
- W3166456209 cites W2974356752 @default.
- W3166456209 cites W2997286550 @default.
- W3166456209 cites W3004101089 @default.
- W3166456209 cites W3034552520 @default.
- W3166456209 cites W3047032303 @default.
- W3166456209 cites W3073438872 @default.
- W3166456209 cites W3088226460 @default.
- W3166456209 cites W3100548413 @default.
- W3166456209 cites W3105636206 @default.
- W3166456209 cites W3120333390 @default.
- W3166456209 cites W3125832420 @default.
- W3166456209 cites W3128646645 @default.
- W3166456209 cites W3132455321 @default.
- W3166456209 cites W3168997536 @default.
- W3166456209 cites W4289085709 @default.
- W3166456209 cites W639708223 @default.
- W3166456209 doi "https://doi.org/10.1016/j.aej.2021.04.072" @default.
- W3166456209 hasPublicationYear "2022" @default.
- W3166456209 type Work @default.
- W3166456209 sameAs 3166456209 @default.
- W3166456209 citedByCount "15" @default.
- W3166456209 countsByYear W31664562092021 @default.
- W3166456209 countsByYear W31664562092022 @default.
- W3166456209 countsByYear W31664562092023 @default.
- W3166456209 crossrefType "journal-article" @default.
- W3166456209 hasAuthorship W3166456209A5019316915 @default.
- W3166456209 hasAuthorship W3166456209A5026552070 @default.
- W3166456209 hasAuthorship W3166456209A5040270498 @default.
- W3166456209 hasAuthorship W3166456209A5047100956 @default.
- W3166456209 hasAuthorship W3166456209A5050501022 @default.
- W3166456209 hasAuthorship W3166456209A5067148054 @default.
- W3166456209 hasAuthorship W3166456209A5073196579 @default.
- W3166456209 hasAuthorship W3166456209A5088776607 @default.
- W3166456209 hasAuthorship W3166456209A5091803837 @default.
- W3166456209 hasBestOaLocation W31664562091 @default.
- W3166456209 hasConcept C108583219 @default.
- W3166456209 hasConcept C119857082 @default.
- W3166456209 hasConcept C121608353 @default.
- W3166456209 hasConcept C126322002 @default.
- W3166456209 hasConcept C127162648 @default.
- W3166456209 hasConcept C148524875 @default.
- W3166456209 hasConcept C153180895 @default.
- W3166456209 hasConcept C154945302 @default.
- W3166456209 hasConcept C2778435480 @default.
- W3166456209 hasConcept C2779549770 @default.
- W3166456209 hasConcept C31258907 @default.
- W3166456209 hasConcept C41008148 @default.
- W3166456209 hasConcept C526805850 @default.
- W3166456209 hasConcept C71924100 @default.
- W3166456209 hasConcept C81363708 @default.
- W3166456209 hasConcept C89600930 @default.
- W3166456209 hasConceptScore W3166456209C108583219 @default.
- W3166456209 hasConceptScore W3166456209C119857082 @default.
- W3166456209 hasConceptScore W3166456209C121608353 @default.
- W3166456209 hasConceptScore W3166456209C126322002 @default.
- W3166456209 hasConceptScore W3166456209C127162648 @default.
- W3166456209 hasConceptScore W3166456209C148524875 @default.
- W3166456209 hasConceptScore W3166456209C153180895 @default.
- W3166456209 hasConceptScore W3166456209C154945302 @default.
- W3166456209 hasConceptScore W3166456209C2778435480 @default.
- W3166456209 hasConceptScore W3166456209C2779549770 @default.
- W3166456209 hasConceptScore W3166456209C31258907 @default.
- W3166456209 hasConceptScore W3166456209C41008148 @default.