Matches in SemOpenAlex for { <https://semopenalex.org/work/W3166511013> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3166511013 endingPage "149" @default.
- W3166511013 startingPage "140" @default.
- W3166511013 abstract "This paper proposes a methodological approach with a transfer learning scheme for plastic waste bottle detection and instance segmentation using the textit{mask region proposal convolutional neural network} (Mask R-CNN). Plastic bottles constitute one of the major pollutants posing a serious threat to the environment both in oceans and on land. The automated identification and segregation of bottles can facilitate plastic waste recycling. We prepare a custom-made dataset of 192 bottle images with pixel-by pixel-polygon annotation for the automatic segmentation task. The proposed transfer learning scheme makes use of a Mask R-CNN model pre-trained on the Microsoft COCO dataset. We present a comprehensive scheme for fine-tuning the base pre-trained Mask-RCNN model on our custom dataset. Our final fine-tuned model has achieved 59.4 textit{mean average precision} (mAP), which corresponds to the MS COCO metric. The results indicate a promising application of deep learning for detecting waste bottles." @default.
- W3166511013 created "2021-06-22" @default.
- W3166511013 creator A5005482128 @default.
- W3166511013 creator A5056482426 @default.
- W3166511013 creator A5058318377 @default.
- W3166511013 date "2021-01-01" @default.
- W3166511013 modified "2023-10-17" @default.
- W3166511013 title "Transfer Learning for Instance Segmentation of Waste Bottles Using Mask R-CNN Algorithm" @default.
- W3166511013 cites W1861492603 @default.
- W3166511013 cites W2037227137 @default.
- W3166511013 cites W2037496050 @default.
- W3166511013 cites W2064985253 @default.
- W3166511013 cites W2165698076 @default.
- W3166511013 cites W2557728737 @default.
- W3166511013 cites W2792163270 @default.
- W3166511013 cites W2804860796 @default.
- W3166511013 cites W2884367402 @default.
- W3166511013 cites W2890334714 @default.
- W3166511013 cites W2954996726 @default.
- W3166511013 cites W2963037989 @default.
- W3166511013 cites W2963150697 @default.
- W3166511013 cites W2968177401 @default.
- W3166511013 cites W2980421292 @default.
- W3166511013 cites W3106250896 @default.
- W3166511013 doi "https://doi.org/10.1007/978-3-030-71187-0_13" @default.
- W3166511013 hasPublicationYear "2021" @default.
- W3166511013 type Work @default.
- W3166511013 sameAs 3166511013 @default.
- W3166511013 citedByCount "1" @default.
- W3166511013 countsByYear W31665110132023 @default.
- W3166511013 crossrefType "book-chapter" @default.
- W3166511013 hasAuthorship W3166511013A5005482128 @default.
- W3166511013 hasAuthorship W3166511013A5056482426 @default.
- W3166511013 hasAuthorship W3166511013A5058318377 @default.
- W3166511013 hasBestOaLocation W31665110132 @default.
- W3166511013 hasConcept C126042441 @default.
- W3166511013 hasConcept C127413603 @default.
- W3166511013 hasConcept C134306372 @default.
- W3166511013 hasConcept C150899416 @default.
- W3166511013 hasConcept C153180895 @default.
- W3166511013 hasConcept C154945302 @default.
- W3166511013 hasConcept C159985019 @default.
- W3166511013 hasConcept C176217482 @default.
- W3166511013 hasConcept C190694206 @default.
- W3166511013 hasConcept C192562407 @default.
- W3166511013 hasConcept C21547014 @default.
- W3166511013 hasConcept C2910190658 @default.
- W3166511013 hasConcept C32236832 @default.
- W3166511013 hasConcept C33923547 @default.
- W3166511013 hasConcept C41008148 @default.
- W3166511013 hasConcept C76155785 @default.
- W3166511013 hasConcept C77618280 @default.
- W3166511013 hasConcept C81363708 @default.
- W3166511013 hasConcept C89600930 @default.
- W3166511013 hasConceptScore W3166511013C126042441 @default.
- W3166511013 hasConceptScore W3166511013C127413603 @default.
- W3166511013 hasConceptScore W3166511013C134306372 @default.
- W3166511013 hasConceptScore W3166511013C150899416 @default.
- W3166511013 hasConceptScore W3166511013C153180895 @default.
- W3166511013 hasConceptScore W3166511013C154945302 @default.
- W3166511013 hasConceptScore W3166511013C159985019 @default.
- W3166511013 hasConceptScore W3166511013C176217482 @default.
- W3166511013 hasConceptScore W3166511013C190694206 @default.
- W3166511013 hasConceptScore W3166511013C192562407 @default.
- W3166511013 hasConceptScore W3166511013C21547014 @default.
- W3166511013 hasConceptScore W3166511013C2910190658 @default.
- W3166511013 hasConceptScore W3166511013C32236832 @default.
- W3166511013 hasConceptScore W3166511013C33923547 @default.
- W3166511013 hasConceptScore W3166511013C41008148 @default.
- W3166511013 hasConceptScore W3166511013C76155785 @default.
- W3166511013 hasConceptScore W3166511013C77618280 @default.
- W3166511013 hasConceptScore W3166511013C81363708 @default.
- W3166511013 hasConceptScore W3166511013C89600930 @default.
- W3166511013 hasLocation W31665110131 @default.
- W3166511013 hasLocation W31665110132 @default.
- W3166511013 hasLocation W31665110133 @default.
- W3166511013 hasOpenAccess W3166511013 @default.
- W3166511013 hasPrimaryLocation W31665110131 @default.
- W3166511013 hasRelatedWork W2738221750 @default.
- W3166511013 hasRelatedWork W2914010220 @default.
- W3166511013 hasRelatedWork W2972069047 @default.
- W3166511013 hasRelatedWork W3012393889 @default.
- W3166511013 hasRelatedWork W3091976719 @default.
- W3166511013 hasRelatedWork W3135818718 @default.
- W3166511013 hasRelatedWork W3153891452 @default.
- W3166511013 hasRelatedWork W3189091156 @default.
- W3166511013 hasRelatedWork W3192840557 @default.
- W3166511013 hasRelatedWork W4206156330 @default.
- W3166511013 isParatext "false" @default.
- W3166511013 isRetracted "false" @default.
- W3166511013 magId "3166511013" @default.
- W3166511013 workType "book-chapter" @default.