Matches in SemOpenAlex for { <https://semopenalex.org/work/W3166670750> ?p ?o ?g. }
- W3166670750 endingPage "84315" @default.
- W3166670750 startingPage "84306" @default.
- W3166670750 abstract "Non-Intrusive Load Monitoring (NILM) is particularly important for demand response. This paper proposes an innovative method based on a deep learning model to recognize the working state of electrical appliances using low frequency load data. The approach includes a data processing step, a deep learning model and a new accuracy calculation method. The data processing step consists of a multi-feature and high-dimensional method (MFHDM) and a pre-training process. The deep learning model consists of a convolutional neural network (CNN), a long-term short-term memory network (LSTM) and a random-forest (RF) algorithm. The proposed method addresses the label correlation problem and the class-imbalance problem. To test the proposed method, the Reference Energy Disaggregation Dataset (REDD) and the Pecan Street dataset (PSD) are used. A comparative analysis with several models shows that the proposed method can effectively improve electrical appliance recognition accuracy and realize NILM." @default.
- W3166670750 created "2021-06-22" @default.
- W3166670750 creator A5029815579 @default.
- W3166670750 creator A5045415911 @default.
- W3166670750 creator A5064816456 @default.
- W3166670750 creator A5064950120 @default.
- W3166670750 creator A5076663408 @default.
- W3166670750 creator A5088293627 @default.
- W3166670750 date "2021-01-01" @default.
- W3166670750 modified "2023-10-02" @default.
- W3166670750 title "Non-Intrusive Load Monitoring Using a CNN-LSTM-RF Model Considering Label Correlation and Class-Imbalance" @default.
- W3166670750 cites W1479651931 @default.
- W3166670750 cites W1735866749 @default.
- W3166670750 cites W1969541079 @default.
- W3166670750 cites W1980674035 @default.
- W3166670750 cites W2123910460 @default.
- W3166670750 cites W2180975645 @default.
- W3166670750 cites W2222435693 @default.
- W3166670750 cites W2292311507 @default.
- W3166670750 cites W2292806482 @default.
- W3166670750 cites W2465358378 @default.
- W3166670750 cites W2554032856 @default.
- W3166670750 cites W2750941888 @default.
- W3166670750 cites W2755492127 @default.
- W3166670750 cites W2783678138 @default.
- W3166670750 cites W2789937392 @default.
- W3166670750 cites W2806562437 @default.
- W3166670750 cites W2890533905 @default.
- W3166670750 cites W2904341746 @default.
- W3166670750 cites W2940200204 @default.
- W3166670750 cites W2950431277 @default.
- W3166670750 cites W2963212406 @default.
- W3166670750 cites W2970200869 @default.
- W3166670750 cites W2971067036 @default.
- W3166670750 cites W2983028908 @default.
- W3166670750 cites W2990083057 @default.
- W3166670750 cites W3009832084 @default.
- W3166670750 cites W3010208964 @default.
- W3166670750 cites W3011632608 @default.
- W3166670750 cites W3017175091 @default.
- W3166670750 cites W3036968130 @default.
- W3166670750 cites W3095472304 @default.
- W3166670750 cites W3095777295 @default.
- W3166670750 cites W4232409555 @default.
- W3166670750 doi "https://doi.org/10.1109/access.2021.3087696" @default.
- W3166670750 hasPublicationYear "2021" @default.
- W3166670750 type Work @default.
- W3166670750 sameAs 3166670750 @default.
- W3166670750 citedByCount "16" @default.
- W3166670750 countsByYear W31666707502021 @default.
- W3166670750 countsByYear W31666707502022 @default.
- W3166670750 countsByYear W31666707502023 @default.
- W3166670750 crossrefType "journal-article" @default.
- W3166670750 hasAuthorship W3166670750A5029815579 @default.
- W3166670750 hasAuthorship W3166670750A5045415911 @default.
- W3166670750 hasAuthorship W3166670750A5064816456 @default.
- W3166670750 hasAuthorship W3166670750A5064950120 @default.
- W3166670750 hasAuthorship W3166670750A5076663408 @default.
- W3166670750 hasAuthorship W3166670750A5088293627 @default.
- W3166670750 hasBestOaLocation W31666707501 @default.
- W3166670750 hasConcept C105795698 @default.
- W3166670750 hasConcept C108583219 @default.
- W3166670750 hasConcept C111919701 @default.
- W3166670750 hasConcept C119857082 @default.
- W3166670750 hasConcept C138885662 @default.
- W3166670750 hasConcept C153180895 @default.
- W3166670750 hasConcept C154945302 @default.
- W3166670750 hasConcept C169258074 @default.
- W3166670750 hasConcept C186370098 @default.
- W3166670750 hasConcept C2776401178 @default.
- W3166670750 hasConcept C2777212361 @default.
- W3166670750 hasConcept C33923547 @default.
- W3166670750 hasConcept C41008148 @default.
- W3166670750 hasConcept C41895202 @default.
- W3166670750 hasConcept C52622490 @default.
- W3166670750 hasConcept C67186912 @default.
- W3166670750 hasConcept C77088390 @default.
- W3166670750 hasConcept C81363708 @default.
- W3166670750 hasConcept C98045186 @default.
- W3166670750 hasConceptScore W3166670750C105795698 @default.
- W3166670750 hasConceptScore W3166670750C108583219 @default.
- W3166670750 hasConceptScore W3166670750C111919701 @default.
- W3166670750 hasConceptScore W3166670750C119857082 @default.
- W3166670750 hasConceptScore W3166670750C138885662 @default.
- W3166670750 hasConceptScore W3166670750C153180895 @default.
- W3166670750 hasConceptScore W3166670750C154945302 @default.
- W3166670750 hasConceptScore W3166670750C169258074 @default.
- W3166670750 hasConceptScore W3166670750C186370098 @default.
- W3166670750 hasConceptScore W3166670750C2776401178 @default.
- W3166670750 hasConceptScore W3166670750C2777212361 @default.
- W3166670750 hasConceptScore W3166670750C33923547 @default.
- W3166670750 hasConceptScore W3166670750C41008148 @default.
- W3166670750 hasConceptScore W3166670750C41895202 @default.
- W3166670750 hasConceptScore W3166670750C52622490 @default.
- W3166670750 hasConceptScore W3166670750C67186912 @default.
- W3166670750 hasConceptScore W3166670750C77088390 @default.
- W3166670750 hasConceptScore W3166670750C81363708 @default.
- W3166670750 hasConceptScore W3166670750C98045186 @default.