Matches in SemOpenAlex for { <https://semopenalex.org/work/W3166703016> ?p ?o ?g. }
- W3166703016 endingPage "44" @default.
- W3166703016 startingPage "31" @default.
- W3166703016 abstract "Since diverse and complex emotions need to be expressed by different facial deformation and appearances, facial animation has become a serious and on-going challenge for computer animation industry. Face reconstruction techniques based on 3D morphable face model and deep learning provide one effective solution to reuse existing databases and create believable animation of new characters from images or videos in seconds, which greatly reduce heavy manual operations and a lot of time. In this paper, we review the databases and state-of-the-art methods of 3D face reconstruction from a single RGB image. First, we classify 3D reconstruction methods into three categories and review each of them. These three categories are: Shape-from-Shading (SFS), 3D Morphable Face Model (3DMM), and Deep Learning (DL) based 3D face reconstruction. Next, we introduce existing 2D and 3D facial databases. After that, we review 10 methods of deep learning-based 3D face reconstruction and evaluate four representative ones among them. Finally, we draw conclusions of this paper and discuss future research directions." @default.
- W3166703016 created "2021-06-22" @default.
- W3166703016 creator A5014857926 @default.
- W3166703016 creator A5046801323 @default.
- W3166703016 creator A5066056488 @default.
- W3166703016 creator A5074858947 @default.
- W3166703016 creator A5079836770 @default.
- W3166703016 creator A5087575477 @default.
- W3166703016 date "2021-01-01" @default.
- W3166703016 modified "2023-10-15" @default.
- W3166703016 title "State-of-the-Art in 3D Face Reconstruction from a Single RGB Image" @default.
- W3166703016 cites W1566413196 @default.
- W3166703016 cites W1596204588 @default.
- W3166703016 cites W1834627138 @default.
- W3166703016 cites W1901129140 @default.
- W3166703016 cites W1980257741 @default.
- W3166703016 cites W1983733476 @default.
- W3166703016 cites W2012885984 @default.
- W3166703016 cites W2017107803 @default.
- W3166703016 cites W2024922353 @default.
- W3166703016 cites W2027297564 @default.
- W3166703016 cites W2055492845 @default.
- W3166703016 cites W2087007396 @default.
- W3166703016 cites W2107037917 @default.
- W3166703016 cites W2118304946 @default.
- W3166703016 cites W2163131540 @default.
- W3166703016 cites W2237250383 @default.
- W3166703016 cites W2284800790 @default.
- W3166703016 cites W2325939864 @default.
- W3166703016 cites W2398381847 @default.
- W3166703016 cites W2469791204 @default.
- W3166703016 cites W2470957930 @default.
- W3166703016 cites W2542323081 @default.
- W3166703016 cites W2604524889 @default.
- W3166703016 cites W2770880454 @default.
- W3166703016 cites W2775877962 @default.
- W3166703016 cites W2796822548 @default.
- W3166703016 cites W2799185473 @default.
- W3166703016 cites W2804621595 @default.
- W3166703016 cites W2806379360 @default.
- W3166703016 cites W2902038035 @default.
- W3166703016 cites W2903041701 @default.
- W3166703016 cites W2905739540 @default.
- W3166703016 cites W2912990735 @default.
- W3166703016 cites W2957289502 @default.
- W3166703016 cites W2962770929 @default.
- W3166703016 cites W2963278718 @default.
- W3166703016 cites W2963342110 @default.
- W3166703016 cites W2963409406 @default.
- W3166703016 cites W2964014798 @default.
- W3166703016 cites W2964094607 @default.
- W3166703016 cites W2964176417 @default.
- W3166703016 cites W2980157975 @default.
- W3166703016 cites W2981441786 @default.
- W3166703016 cites W2990431681 @default.
- W3166703016 cites W3034192160 @default.
- W3166703016 cites W3034798648 @default.
- W3166703016 cites W3035418072 @default.
- W3166703016 cites W3035523051 @default.
- W3166703016 cites W3104792420 @default.
- W3166703016 cites W3109317096 @default.
- W3166703016 doi "https://doi.org/10.1007/978-3-030-77977-1_3" @default.
- W3166703016 hasPublicationYear "2021" @default.
- W3166703016 type Work @default.
- W3166703016 sameAs 3166703016 @default.
- W3166703016 citedByCount "2" @default.
- W3166703016 countsByYear W31667030162022 @default.
- W3166703016 countsByYear W31667030162023 @default.
- W3166703016 crossrefType "book-chapter" @default.
- W3166703016 hasAuthorship W3166703016A5014857926 @default.
- W3166703016 hasAuthorship W3166703016A5046801323 @default.
- W3166703016 hasAuthorship W3166703016A5066056488 @default.
- W3166703016 hasAuthorship W3166703016A5074858947 @default.
- W3166703016 hasAuthorship W3166703016A5079836770 @default.
- W3166703016 hasAuthorship W3166703016A5087575477 @default.
- W3166703016 hasBestOaLocation W31667030162 @default.
- W3166703016 hasConcept C108583219 @default.
- W3166703016 hasConcept C109950114 @default.
- W3166703016 hasConcept C115961682 @default.
- W3166703016 hasConcept C121684516 @default.
- W3166703016 hasConcept C138591656 @default.
- W3166703016 hasConcept C141379421 @default.
- W3166703016 hasConcept C144024400 @default.
- W3166703016 hasConcept C153180895 @default.
- W3166703016 hasConcept C154945302 @default.
- W3166703016 hasConcept C2779304628 @default.
- W3166703016 hasConcept C31510193 @default.
- W3166703016 hasConcept C31972630 @default.
- W3166703016 hasConcept C36289849 @default.
- W3166703016 hasConcept C41008148 @default.
- W3166703016 hasConcept C4641261 @default.
- W3166703016 hasConcept C502989409 @default.
- W3166703016 hasConcept C69369342 @default.
- W3166703016 hasConcept C82990744 @default.
- W3166703016 hasConcept C98907195 @default.
- W3166703016 hasConceptScore W3166703016C108583219 @default.
- W3166703016 hasConceptScore W3166703016C109950114 @default.
- W3166703016 hasConceptScore W3166703016C115961682 @default.