Matches in SemOpenAlex for { <https://semopenalex.org/work/W3166799498> ?p ?o ?g. }
- W3166799498 endingPage "11" @default.
- W3166799498 startingPage "1" @default.
- W3166799498 abstract "In modern-day medicine, medical imaging has undergone immense advancements and can capture several biomedical images from patients. In the wake of this, to assist medical specialists, these images can be used and trained in an intelligent system in order to aid the determination of the different diseases that can be identified from analyzing these images. Classification plays an important role in this regard; it enhances the grouping of these images into categories of diseases and optimizes the next step of a computer-aided diagnosis system. The concept of classification in machine learning deals with the problem of identifying to which set of categories a new population belongs. When category membership is known, the classification is done on the basis of a training set of data containing observations. The goal of this paper is to perform a survey of classification algorithms for biomedical images. The paper then describes how these algorithms can be applied to a big data architecture by using the Spark framework. This paper further proposes the classification workflow based on the observed optimal algorithms, Support Vector Machine and Deep Learning as drawn from the literature. The algorithm for the feature extraction step during the classification process is presented and can be customized in all other steps of the proposed classification workflow." @default.
- W3166799498 created "2021-06-22" @default.
- W3166799498 creator A5004088672 @default.
- W3166799498 creator A5034864302 @default.
- W3166799498 creator A5052543039 @default.
- W3166799498 creator A5052894418 @default.
- W3166799498 creator A5065784448 @default.
- W3166799498 creator A5073864992 @default.
- W3166799498 creator A5087950070 @default.
- W3166799498 date "2021-05-30" @default.
- W3166799498 modified "2023-10-01" @default.
- W3166799498 title "Biomedical Image Classification in a Big Data Architecture Using Machine Learning Algorithms" @default.
- W3166799498 cites W1510133588 @default.
- W3166799498 cites W2015570745 @default.
- W3166799498 cites W2053381312 @default.
- W3166799498 cites W2054368795 @default.
- W3166799498 cites W2062707524 @default.
- W3166799498 cites W2131516471 @default.
- W3166799498 cites W2140494000 @default.
- W3166799498 cites W2141108785 @default.
- W3166799498 cites W2198351562 @default.
- W3166799498 cites W2286261512 @default.
- W3166799498 cites W229682254 @default.
- W3166799498 cites W2322011271 @default.
- W3166799498 cites W2437797956 @default.
- W3166799498 cites W2516938563 @default.
- W3166799498 cites W2569531558 @default.
- W3166799498 cites W2625392185 @default.
- W3166799498 cites W2664267452 @default.
- W3166799498 cites W2737585591 @default.
- W3166799498 cites W2750766281 @default.
- W3166799498 cites W2753797983 @default.
- W3166799498 cites W2767066031 @default.
- W3166799498 cites W2772418032 @default.
- W3166799498 cites W2777186991 @default.
- W3166799498 cites W2782485997 @default.
- W3166799498 cites W2783704413 @default.
- W3166799498 cites W2785645041 @default.
- W3166799498 cites W2786204509 @default.
- W3166799498 cites W2789242863 @default.
- W3166799498 cites W2789367970 @default.
- W3166799498 cites W2797427442 @default.
- W3166799498 cites W2799289872 @default.
- W3166799498 cites W2803453607 @default.
- W3166799498 cites W2805287938 @default.
- W3166799498 cites W2807800730 @default.
- W3166799498 cites W2808538957 @default.
- W3166799498 cites W2808864681 @default.
- W3166799498 cites W2809336071 @default.
- W3166799498 cites W2901162702 @default.
- W3166799498 cites W2901768089 @default.
- W3166799498 cites W2913188845 @default.
- W3166799498 cites W2918100823 @default.
- W3166799498 cites W2925517536 @default.
- W3166799498 cites W2949306187 @default.
- W3166799498 cites W2964118901 @default.
- W3166799498 cites W2964638303 @default.
- W3166799498 cites W2967728895 @default.
- W3166799498 cites W2981009032 @default.
- W3166799498 cites W2981025625 @default.
- W3166799498 cites W2981322795 @default.
- W3166799498 cites W2981446616 @default.
- W3166799498 cites W2986120962 @default.
- W3166799498 cites W2986507176 @default.
- W3166799498 cites W2991507433 @default.
- W3166799498 cites W2991970757 @default.
- W3166799498 cites W2992369104 @default.
- W3166799498 cites W2995527107 @default.
- W3166799498 cites W2996312338 @default.
- W3166799498 cites W2996411315 @default.
- W3166799498 cites W2996782006 @default.
- W3166799498 cites W2997679978 @default.
- W3166799498 cites W3000094279 @default.
- W3166799498 cites W3000982932 @default.
- W3166799498 cites W3001083904 @default.
- W3166799498 cites W3001152983 @default.
- W3166799498 cites W3002384566 @default.
- W3166799498 cites W3003037705 @default.
- W3166799498 cites W3004540924 @default.
- W3166799498 cites W3006827887 @default.
- W3166799498 cites W3007444020 @default.
- W3166799498 cites W3007923660 @default.
- W3166799498 cites W3017157669 @default.
- W3166799498 cites W3021131536 @default.
- W3166799498 cites W3095681026 @default.
- W3166799498 cites W3105282616 @default.
- W3166799498 doi "https://doi.org/10.1155/2021/9998819" @default.
- W3166799498 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8191587" @default.
- W3166799498 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34122785" @default.
- W3166799498 hasPublicationYear "2021" @default.
- W3166799498 type Work @default.
- W3166799498 sameAs 3166799498 @default.
- W3166799498 citedByCount "29" @default.
- W3166799498 countsByYear W31667994982021 @default.
- W3166799498 countsByYear W31667994982022 @default.
- W3166799498 countsByYear W31667994982023 @default.
- W3166799498 crossrefType "journal-article" @default.
- W3166799498 hasAuthorship W3166799498A5004088672 @default.