Matches in SemOpenAlex for { <https://semopenalex.org/work/W3166932403> ?p ?o ?g. }
- W3166932403 abstract "Predicting future trajectories of traffic agents in highly interactive environments is an essential and challenging problem for the safe operation of autonomous driving systems. On the basis of the fact that self-driving vehicles are equipped with various types of sensors (e.g., LiDAR scanner, RGB camera, radar, etc.), we propose a Cross-Modal Embedding framework that aims to benefit from the use of multiple input modalities. At training time, our model learns to embed a set of complementary features in a shared latent space by jointly optimizing the objective functions across different types of input data. At test time, a single input modality (e.g., LiDAR data) is required to generate predictions from the input perspective (i.e., in the LiDAR space), while taking advantages from the model trained with multiple sensor modalities. An extensive evaluation is con-ducted to show the efficacy of the proposed framework using two benchmark driving datasets." @default.
- W3166932403 created "2021-06-22" @default.
- W3166932403 creator A5009999184 @default.
- W3166932403 creator A5024124445 @default.
- W3166932403 creator A5027421783 @default.
- W3166932403 creator A5027486466 @default.
- W3166932403 date "2021-06-01" @default.
- W3166932403 modified "2023-10-10" @default.
- W3166932403 title "Shared Cross-Modal Trajectory Prediction for Autonomous Driving" @default.
- W3166932403 cites W1578985305 @default.
- W3166932403 cites W2115579991 @default.
- W3166932403 cites W2340897893 @default.
- W3166932403 cites W2412782625 @default.
- W3166932403 cites W2424778531 @default.
- W3166932403 cites W2526449353 @default.
- W3166932403 cites W2546190447 @default.
- W3166932403 cites W2555618208 @default.
- W3166932403 cites W2607296803 @default.
- W3166932403 cites W2766836212 @default.
- W3166932403 cites W2769735038 @default.
- W3166932403 cites W2774839435 @default.
- W3166932403 cites W2777106508 @default.
- W3166932403 cites W2799059904 @default.
- W3166932403 cites W2811025443 @default.
- W3166932403 cites W2951517617 @default.
- W3166932403 cites W2963001155 @default.
- W3166932403 cites W2963309363 @default.
- W3166932403 cites W2963353290 @default.
- W3166932403 cites W2963400571 @default.
- W3166932403 cites W2963692464 @default.
- W3166932403 cites W2963818059 @default.
- W3166932403 cites W2963945905 @default.
- W3166932403 cites W2967390659 @default.
- W3166932403 cites W2967740791 @default.
- W3166932403 cites W2967835402 @default.
- W3166932403 cites W2968393007 @default.
- W3166932403 cites W2982267872 @default.
- W3166932403 cites W2982745079 @default.
- W3166932403 cites W2983227562 @default.
- W3166932403 cites W2991653934 @default.
- W3166932403 cites W3003235888 @default.
- W3166932403 cites W3003906095 @default.
- W3166932403 cites W3035096461 @default.
- W3166932403 cites W3099155473 @default.
- W3166932403 cites W3105115779 @default.
- W3166932403 cites W753847829 @default.
- W3166932403 doi "https://doi.org/10.1109/cvpr46437.2021.00031" @default.
- W3166932403 hasPublicationYear "2021" @default.
- W3166932403 type Work @default.
- W3166932403 sameAs 3166932403 @default.
- W3166932403 citedByCount "35" @default.
- W3166932403 countsByYear W31669324032020 @default.
- W3166932403 countsByYear W31669324032021 @default.
- W3166932403 countsByYear W31669324032022 @default.
- W3166932403 countsByYear W31669324032023 @default.
- W3166932403 crossrefType "proceedings-article" @default.
- W3166932403 hasAuthorship W3166932403A5009999184 @default.
- W3166932403 hasAuthorship W3166932403A5024124445 @default.
- W3166932403 hasAuthorship W3166932403A5027421783 @default.
- W3166932403 hasAuthorship W3166932403A5027486466 @default.
- W3166932403 hasBestOaLocation W31669324032 @default.
- W3166932403 hasConcept C121332964 @default.
- W3166932403 hasConcept C12713177 @default.
- W3166932403 hasConcept C127313418 @default.
- W3166932403 hasConcept C1276947 @default.
- W3166932403 hasConcept C13280743 @default.
- W3166932403 hasConcept C13662910 @default.
- W3166932403 hasConcept C144024400 @default.
- W3166932403 hasConcept C154945302 @default.
- W3166932403 hasConcept C177264268 @default.
- W3166932403 hasConcept C185592680 @default.
- W3166932403 hasConcept C185798385 @default.
- W3166932403 hasConcept C188027245 @default.
- W3166932403 hasConcept C199360897 @default.
- W3166932403 hasConcept C205649164 @default.
- W3166932403 hasConcept C2779903281 @default.
- W3166932403 hasConcept C2780226545 @default.
- W3166932403 hasConcept C31972630 @default.
- W3166932403 hasConcept C36289849 @default.
- W3166932403 hasConcept C41008148 @default.
- W3166932403 hasConcept C41608201 @default.
- W3166932403 hasConcept C51399673 @default.
- W3166932403 hasConcept C554190296 @default.
- W3166932403 hasConcept C62649853 @default.
- W3166932403 hasConcept C71139939 @default.
- W3166932403 hasConcept C76155785 @default.
- W3166932403 hasConceptScore W3166932403C121332964 @default.
- W3166932403 hasConceptScore W3166932403C12713177 @default.
- W3166932403 hasConceptScore W3166932403C127313418 @default.
- W3166932403 hasConceptScore W3166932403C1276947 @default.
- W3166932403 hasConceptScore W3166932403C13280743 @default.
- W3166932403 hasConceptScore W3166932403C13662910 @default.
- W3166932403 hasConceptScore W3166932403C144024400 @default.
- W3166932403 hasConceptScore W3166932403C154945302 @default.
- W3166932403 hasConceptScore W3166932403C177264268 @default.
- W3166932403 hasConceptScore W3166932403C185592680 @default.
- W3166932403 hasConceptScore W3166932403C185798385 @default.
- W3166932403 hasConceptScore W3166932403C188027245 @default.
- W3166932403 hasConceptScore W3166932403C199360897 @default.
- W3166932403 hasConceptScore W3166932403C205649164 @default.