Matches in SemOpenAlex for { <https://semopenalex.org/work/W3166952012> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3166952012 endingPage "2193" @default.
- W3166952012 startingPage "2183" @default.
- W3166952012 abstract "Financial technology (FinTech) has become a hot research topic recently, moreover, an area of major investment for most financial institutions. As the FinTech unleashed many new strategic solutions for major financial problems. One of those pivotal strategies of FinTech is financial crisis prediction (FCP) that dictates the financial status of an institution. Also, the rise of the Internet-of-Things (IoT) technology has paved a new way for interaction between humans and the physical world. Therefore, IoT can feasibly be incorporated into the FCP model to obtain a real-time analysis of the financial data from the clients. With this perspective, we propose an intelligent IoT-aided FCP model using metaheuristic algorithms. The proposed FCP method comprises data acquisition, preprocessing, feature selection (FS), and classification. First, the financial data of the enterprises are collected using IoT devices, such as smartphones, laptops, etc. Next, the quantum artificial butterfly optimization (QABO) approach for FS is applied to choose an optimal set of features. Afterward, long short-time memory (LSTM) with recurrent neural network (RNN) model is employed to classify the collected financial data. An exhaustive experimental validation process is carried out to ensure the performance of the proposed QABO-LSTM-RNN model. The simulation results accredited the efficacy of the proposed model contrasted with other baseline methods in terms of best cost, sensitivity, specificity, accuracy, F-score, kappa, and Mathew correlation coefficient (MCC)." @default.
- W3166952012 created "2021-06-22" @default.
- W3166952012 creator A5001242154 @default.
- W3166952012 creator A5033295521 @default.
- W3166952012 date "2023-02-01" @default.
- W3166952012 modified "2023-09-26" @default.
- W3166952012 title "An Intelligent Internet-of-Things-Aided Financial Crisis Prediction Model in FinTech" @default.
- W3166952012 cites W2048352768 @default.
- W3166952012 cites W2050642268 @default.
- W3166952012 cites W2622226130 @default.
- W3166952012 cites W2889613668 @default.
- W3166952012 cites W2971659906 @default.
- W3166952012 cites W2974782163 @default.
- W3166952012 cites W2999911359 @default.
- W3166952012 cites W3030877246 @default.
- W3166952012 cites W3037806987 @default.
- W3166952012 cites W3090627926 @default.
- W3166952012 cites W3092108740 @default.
- W3166952012 cites W3127774132 @default.
- W3166952012 cites W3131124683 @default.
- W3166952012 doi "https://doi.org/10.1109/jiot.2021.3088753" @default.
- W3166952012 hasPublicationYear "2023" @default.
- W3166952012 type Work @default.
- W3166952012 sameAs 3166952012 @default.
- W3166952012 citedByCount "6" @default.
- W3166952012 countsByYear W31669520122022 @default.
- W3166952012 countsByYear W31669520122023 @default.
- W3166952012 crossrefType "journal-article" @default.
- W3166952012 hasAuthorship W3166952012A5001242154 @default.
- W3166952012 hasAuthorship W3166952012A5033295521 @default.
- W3166952012 hasConcept C10138342 @default.
- W3166952012 hasConcept C119857082 @default.
- W3166952012 hasConcept C124101348 @default.
- W3166952012 hasConcept C147168706 @default.
- W3166952012 hasConcept C148483581 @default.
- W3166952012 hasConcept C154945302 @default.
- W3166952012 hasConcept C162324750 @default.
- W3166952012 hasConcept C41008148 @default.
- W3166952012 hasConcept C50644808 @default.
- W3166952012 hasConcept C67186912 @default.
- W3166952012 hasConcept C77088390 @default.
- W3166952012 hasConceptScore W3166952012C10138342 @default.
- W3166952012 hasConceptScore W3166952012C119857082 @default.
- W3166952012 hasConceptScore W3166952012C124101348 @default.
- W3166952012 hasConceptScore W3166952012C147168706 @default.
- W3166952012 hasConceptScore W3166952012C148483581 @default.
- W3166952012 hasConceptScore W3166952012C154945302 @default.
- W3166952012 hasConceptScore W3166952012C162324750 @default.
- W3166952012 hasConceptScore W3166952012C41008148 @default.
- W3166952012 hasConceptScore W3166952012C50644808 @default.
- W3166952012 hasConceptScore W3166952012C67186912 @default.
- W3166952012 hasConceptScore W3166952012C77088390 @default.
- W3166952012 hasIssue "3" @default.
- W3166952012 hasLocation W31669520121 @default.
- W3166952012 hasOpenAccess W3166952012 @default.
- W3166952012 hasPrimaryLocation W31669520121 @default.
- W3166952012 hasRelatedWork W1539815557 @default.
- W3166952012 hasRelatedWork W2038464048 @default.
- W3166952012 hasRelatedWork W2961085424 @default.
- W3166952012 hasRelatedWork W3087493185 @default.
- W3166952012 hasRelatedWork W3200179079 @default.
- W3166952012 hasRelatedWork W4281386417 @default.
- W3166952012 hasRelatedWork W4293525103 @default.
- W3166952012 hasRelatedWork W4306674287 @default.
- W3166952012 hasRelatedWork W4327531511 @default.
- W3166952012 hasRelatedWork W4327831767 @default.
- W3166952012 hasVolume "10" @default.
- W3166952012 isParatext "false" @default.
- W3166952012 isRetracted "false" @default.
- W3166952012 magId "3166952012" @default.
- W3166952012 workType "article" @default.