Matches in SemOpenAlex for { <https://semopenalex.org/work/W3166995168> ?p ?o ?g. }
- W3166995168 abstract "Abstract We perform a comprehensive numerical study of the effect of approximation-theoretical results for neural networks on practical learning problems in the context of numerical analysis. As the underlying model, we study the machine-learning-based solution of parametric partial differential equations. Here, approximation theory for fully-connected neural networks predicts that the performance of the model should depend only very mildly on the dimension of the parameter space and is determined by the intrinsic dimension of the solution manifold of the parametric partial differential equation. We use various methods to establish comparability between test-cases by minimizing the effect of the choice of test-cases on the optimization and sampling aspects of the learning problem. We find strong support for the hypothesis that approximation-theoretical effects heavily influence the practical behavior of learning problems in numerical analysis. Turning to practically more successful and modern architectures, at the end of this study we derive improved error bounds by focusing on convolutional neural networks." @default.
- W3166995168 created "2021-06-22" @default.
- W3166995168 creator A5008776954 @default.
- W3166995168 creator A5019220707 @default.
- W3166995168 creator A5027395961 @default.
- W3166995168 creator A5041074956 @default.
- W3166995168 creator A5090767423 @default.
- W3166995168 date "2021-06-05" @default.
- W3166995168 modified "2023-10-01" @default.
- W3166995168 title "Numerical Solution of the Parametric Diffusion Equation by Deep Neural Networks" @default.
- W3166995168 cites W1605528072 @default.
- W3166995168 cites W2047278710 @default.
- W3166995168 cites W2052690618 @default.
- W3166995168 cites W2056653303 @default.
- W3166995168 cites W2070980742 @default.
- W3166995168 cites W2075646404 @default.
- W3166995168 cites W2079224763 @default.
- W3166995168 cites W2112796928 @default.
- W3166995168 cites W2117302185 @default.
- W3166995168 cites W2166116275 @default.
- W3166995168 cites W2267573953 @default.
- W3166995168 cites W2515829451 @default.
- W3166995168 cites W2528305538 @default.
- W3166995168 cites W2550848904 @default.
- W3166995168 cites W2625995436 @default.
- W3166995168 cites W2745110207 @default.
- W3166995168 cites W2749028154 @default.
- W3166995168 cites W2753962198 @default.
- W3166995168 cites W2754833785 @default.
- W3166995168 cites W2760972773 @default.
- W3166995168 cites W2766298346 @default.
- W3166995168 cites W2778051509 @default.
- W3166995168 cites W2786232134 @default.
- W3166995168 cites W2788980797 @default.
- W3166995168 cites W2803629276 @default.
- W3166995168 cites W2883486956 @default.
- W3166995168 cites W2889523591 @default.
- W3166995168 cites W2930017973 @default.
- W3166995168 cites W2962737219 @default.
- W3166995168 cites W2962761333 @default.
- W3166995168 cites W2963146412 @default.
- W3166995168 cites W2963798430 @default.
- W3166995168 cites W2966419255 @default.
- W3166995168 cites W2982376398 @default.
- W3166995168 cites W2986795381 @default.
- W3166995168 cites W2998107928 @default.
- W3166995168 cites W2998847955 @default.
- W3166995168 cites W2998882635 @default.
- W3166995168 cites W3002335888 @default.
- W3166995168 cites W3023241366 @default.
- W3166995168 cites W3049518590 @default.
- W3166995168 cites W3101260193 @default.
- W3166995168 cites W3101643101 @default.
- W3166995168 cites W3103239355 @default.
- W3166995168 cites W3104114886 @default.
- W3166995168 cites W3126658681 @default.
- W3166995168 cites W3167031531 @default.
- W3166995168 cites W3200336025 @default.
- W3166995168 cites W4240395309 @default.
- W3166995168 cites W4245558064 @default.
- W3166995168 doi "https://doi.org/10.1007/s10915-021-01532-w" @default.
- W3166995168 hasPublicationYear "2021" @default.
- W3166995168 type Work @default.
- W3166995168 sameAs 3166995168 @default.
- W3166995168 citedByCount "32" @default.
- W3166995168 countsByYear W31669951682020 @default.
- W3166995168 countsByYear W31669951682021 @default.
- W3166995168 countsByYear W31669951682022 @default.
- W3166995168 countsByYear W31669951682023 @default.
- W3166995168 crossrefType "journal-article" @default.
- W3166995168 hasAuthorship W3166995168A5008776954 @default.
- W3166995168 hasAuthorship W3166995168A5019220707 @default.
- W3166995168 hasAuthorship W3166995168A5027395961 @default.
- W3166995168 hasAuthorship W3166995168A5041074956 @default.
- W3166995168 hasAuthorship W3166995168A5090767423 @default.
- W3166995168 hasBestOaLocation W31669951681 @default.
- W3166995168 hasConcept C105795698 @default.
- W3166995168 hasConcept C111030470 @default.
- W3166995168 hasConcept C117251300 @default.
- W3166995168 hasConcept C126255220 @default.
- W3166995168 hasConcept C134306372 @default.
- W3166995168 hasConcept C151730666 @default.
- W3166995168 hasConcept C154945302 @default.
- W3166995168 hasConcept C202444582 @default.
- W3166995168 hasConcept C2779343474 @default.
- W3166995168 hasConcept C28826006 @default.
- W3166995168 hasConcept C30732413 @default.
- W3166995168 hasConcept C33676613 @default.
- W3166995168 hasConcept C33923547 @default.
- W3166995168 hasConcept C41008148 @default.
- W3166995168 hasConcept C48753275 @default.
- W3166995168 hasConcept C50644808 @default.
- W3166995168 hasConcept C86803240 @default.
- W3166995168 hasConcept C93779851 @default.
- W3166995168 hasConceptScore W3166995168C105795698 @default.
- W3166995168 hasConceptScore W3166995168C111030470 @default.
- W3166995168 hasConceptScore W3166995168C117251300 @default.
- W3166995168 hasConceptScore W3166995168C126255220 @default.
- W3166995168 hasConceptScore W3166995168C134306372 @default.
- W3166995168 hasConceptScore W3166995168C151730666 @default.