Matches in SemOpenAlex for { <https://semopenalex.org/work/W3166998040> ?p ?o ?g. }
- W3166998040 abstract "In this study we focus on the problem of joint learning of multiple differential networks with function Magnetic Resonance Imaging (fMRI) data sets from multiple research centers. As the research centers may use different scanners and imaging parameters, joint learning of differential networks with fMRI data from different centers may reflect the underlying mechanism of neurological diseases from different perspectives while capturing the common structures. We transform the task as a penalized logistic regression problem, and exploit sparse group Minimax Concave Penalty (gMCP) to induce common structures among multiple differential networks and the sparse structures of each differential network. To further enhance the empirical performance, we develop an ensemble-learning procedure. We conduct thorough simulation study to assess the finite-sample performance of the proposed method and compare with state-of-the-art alternatives. We apply the proposed method to analyze fMRI datasets related with Attention Deficit Hyperactivity Disorder from various research centers. The identified common hub nodes and differential interaction patterns coincides with the existing experimental studies." @default.
- W3166998040 created "2021-06-22" @default.
- W3166998040 creator A5002827290 @default.
- W3166998040 creator A5018964484 @default.
- W3166998040 creator A5020147975 @default.
- W3166998040 creator A5022499603 @default.
- W3166998040 creator A5039562624 @default.
- W3166998040 creator A5056036725 @default.
- W3166998040 date "2021-06-07" @default.
- W3166998040 modified "2023-09-23" @default.
- W3166998040 title "Joint Learning of Multiple Differential Networks with fMRI data for Brain Connectivity Alteration Detection" @default.
- W3166998040 cites W1569510521 @default.
- W3166998040 cites W1906182678 @default.
- W3166998040 cites W1989727964 @default.
- W3166998040 cites W2001334414 @default.
- W3166998040 cites W2005821483 @default.
- W3166998040 cites W2027299889 @default.
- W3166998040 cites W2030391580 @default.
- W3166998040 cites W2039954784 @default.
- W3166998040 cites W2054924908 @default.
- W3166998040 cites W2061637100 @default.
- W3166998040 cites W2063751559 @default.
- W3166998040 cites W2086400086 @default.
- W3166998040 cites W2102308641 @default.
- W3166998040 cites W2125156589 @default.
- W3166998040 cites W2132555912 @default.
- W3166998040 cites W2132756430 @default.
- W3166998040 cites W2154560360 @default.
- W3166998040 cites W2170866857 @default.
- W3166998040 cites W2271861971 @default.
- W3166998040 cites W2330558670 @default.
- W3166998040 cites W2465098683 @default.
- W3166998040 cites W2591872302 @default.
- W3166998040 cites W2607356028 @default.
- W3166998040 cites W2738684998 @default.
- W3166998040 cites W2808185111 @default.
- W3166998040 cites W2862690536 @default.
- W3166998040 cites W2888040559 @default.
- W3166998040 cites W2931120067 @default.
- W3166998040 cites W2949273100 @default.
- W3166998040 cites W2950471994 @default.
- W3166998040 cites W2950568021 @default.
- W3166998040 cites W2963191122 @default.
- W3166998040 cites W2963269830 @default.
- W3166998040 cites W3005901674 @default.
- W3166998040 cites W3080360029 @default.
- W3166998040 cites W3098985301 @default.
- W3166998040 cites W3155356647 @default.
- W3166998040 hasPublicationYear "2021" @default.
- W3166998040 type Work @default.
- W3166998040 sameAs 3166998040 @default.
- W3166998040 citedByCount "0" @default.
- W3166998040 crossrefType "posted-content" @default.
- W3166998040 hasAuthorship W3166998040A5002827290 @default.
- W3166998040 hasAuthorship W3166998040A5018964484 @default.
- W3166998040 hasAuthorship W3166998040A5020147975 @default.
- W3166998040 hasAuthorship W3166998040A5022499603 @default.
- W3166998040 hasAuthorship W3166998040A5039562624 @default.
- W3166998040 hasAuthorship W3166998040A5056036725 @default.
- W3166998040 hasConcept C119857082 @default.
- W3166998040 hasConcept C120665830 @default.
- W3166998040 hasConcept C121332964 @default.
- W3166998040 hasConcept C124101348 @default.
- W3166998040 hasConcept C126255220 @default.
- W3166998040 hasConcept C127413603 @default.
- W3166998040 hasConcept C146978453 @default.
- W3166998040 hasConcept C149728462 @default.
- W3166998040 hasConcept C151956035 @default.
- W3166998040 hasConcept C153180895 @default.
- W3166998040 hasConcept C154945302 @default.
- W3166998040 hasConcept C15744967 @default.
- W3166998040 hasConcept C165696696 @default.
- W3166998040 hasConcept C169760540 @default.
- W3166998040 hasConcept C170154142 @default.
- W3166998040 hasConcept C18555067 @default.
- W3166998040 hasConcept C185592680 @default.
- W3166998040 hasConcept C192209626 @default.
- W3166998040 hasConcept C198531522 @default.
- W3166998040 hasConcept C2779226451 @default.
- W3166998040 hasConcept C33923547 @default.
- W3166998040 hasConcept C38652104 @default.
- W3166998040 hasConcept C41008148 @default.
- W3166998040 hasConcept C43617362 @default.
- W3166998040 hasConcept C45942800 @default.
- W3166998040 hasConcept C93226319 @default.
- W3166998040 hasConceptScore W3166998040C119857082 @default.
- W3166998040 hasConceptScore W3166998040C120665830 @default.
- W3166998040 hasConceptScore W3166998040C121332964 @default.
- W3166998040 hasConceptScore W3166998040C124101348 @default.
- W3166998040 hasConceptScore W3166998040C126255220 @default.
- W3166998040 hasConceptScore W3166998040C127413603 @default.
- W3166998040 hasConceptScore W3166998040C146978453 @default.
- W3166998040 hasConceptScore W3166998040C149728462 @default.
- W3166998040 hasConceptScore W3166998040C151956035 @default.
- W3166998040 hasConceptScore W3166998040C153180895 @default.
- W3166998040 hasConceptScore W3166998040C154945302 @default.
- W3166998040 hasConceptScore W3166998040C15744967 @default.
- W3166998040 hasConceptScore W3166998040C165696696 @default.
- W3166998040 hasConceptScore W3166998040C169760540 @default.
- W3166998040 hasConceptScore W3166998040C170154142 @default.