Matches in SemOpenAlex for { <https://semopenalex.org/work/W3167106592> ?p ?o ?g. }
- W3167106592 endingPage "2436" @default.
- W3167106592 startingPage "2422" @default.
- W3167106592 abstract "The use of ensemble approaches in the single-objective evolutionary algorithms is ubiquitous, but ensembles of multiobjective evolutionary algorithms (MOEAs) have achieved relatively little attention. On the other hand, manually selecting a suitable MOEA to solve an actual multiobjective optimization problem (MOP) is time-consuming and challenging. Therefore, developing a multiobjective hyperheuristic to allocate computational resources for multiple MOEAs in an intelligent approach is beneficial. In this work, an autoselection strategy of MOEAs based on the performance indicator (MOEAS-PI) is introduced to alleviate the abovementioned problem. In the MOEAS-PI, the performance of each constituent MOEA in the pool is assessed according to a real-time and comprehensive performance indicator, which contains both the current and future performances. The MOEAS-PI is able to easily choose the best performing MOEA during the evolutionary process. Also, it can enhance the robustness of MOEAs and reduce the application risk. The effectiveness of the MOEAS-PI is carefully evaluated on 23 MOPs. Simulation results demonstrate that the MOEAS-PI is an effective and efficient method to integrate the advantages of each individual algorithm. Finally, the MOEAS-PI is utilized to solve a translation control problem of an immersed tunnel element under current flow. Experimental results reveal that the MOEAS-PI is a reliable and effective optimization approach to solve actual MOPs. <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Note to Practitioners</i> —Multiobjective optimization problems (MOPs) have been commonly found in various fields. However, a single MOEA cannot guarantee its sufficient robustness and adaptability in solving MOPs. Therefore, this study aims to propose a multiobjective hyperheuristic algorithm to improve the robustness of MOEAs. The performance of the proposed algorithm is tested on benchmark test functions and an actual MOP. The results show that the proposed approach can select a suitable MOEA to solve a particular type of MOPs during the evolutionary process and provide a solution set for decision-makers to control the translation of an immersed tunnel element under different objectives/operator environments." @default.
- W3167106592 created "2021-06-22" @default.
- W3167106592 creator A5019720353 @default.
- W3167106592 creator A5042483034 @default.
- W3167106592 creator A5083039007 @default.
- W3167106592 date "2022-07-01" @default.
- W3167106592 modified "2023-10-12" @default.
- W3167106592 title "An Autoselection Strategy of Multiobjective Evolutionary Algorithms Based on Performance Indicator and its Application" @default.
- W3167106592 cites W1544309315 @default.
- W3167106592 cites W1549353496 @default.
- W3167106592 cites W1552927435 @default.
- W3167106592 cites W1588375755 @default.
- W3167106592 cites W1668207500 @default.
- W3167106592 cites W1846834309 @default.
- W3167106592 cites W1877326857 @default.
- W3167106592 cites W1945057821 @default.
- W3167106592 cites W1968718770 @default.
- W3167106592 cites W1974758710 @default.
- W3167106592 cites W1998471726 @default.
- W3167106592 cites W2018971911 @default.
- W3167106592 cites W2020466329 @default.
- W3167106592 cites W2056302562 @default.
- W3167106592 cites W2057457236 @default.
- W3167106592 cites W2060024451 @default.
- W3167106592 cites W2070385116 @default.
- W3167106592 cites W2098907614 @default.
- W3167106592 cites W2101473977 @default.
- W3167106592 cites W2106334424 @default.
- W3167106592 cites W2108450544 @default.
- W3167106592 cites W2110831287 @default.
- W3167106592 cites W2125899728 @default.
- W3167106592 cites W2126105956 @default.
- W3167106592 cites W2135366549 @default.
- W3167106592 cites W2143185749 @default.
- W3167106592 cites W2143381319 @default.
- W3167106592 cites W2150046657 @default.
- W3167106592 cites W2151554678 @default.
- W3167106592 cites W2156773695 @default.
- W3167106592 cites W2167757882 @default.
- W3167106592 cites W2191445856 @default.
- W3167106592 cites W224959492 @default.
- W3167106592 cites W225015550 @default.
- W3167106592 cites W2291408466 @default.
- W3167106592 cites W2412273411 @default.
- W3167106592 cites W2469417444 @default.
- W3167106592 cites W2475161805 @default.
- W3167106592 cites W2598286865 @default.
- W3167106592 cites W2599937626 @default.
- W3167106592 cites W2620419788 @default.
- W3167106592 cites W2734511519 @default.
- W3167106592 cites W2746318363 @default.
- W3167106592 cites W2765909570 @default.
- W3167106592 cites W2781324069 @default.
- W3167106592 cites W2791738125 @default.
- W3167106592 cites W2887821262 @default.
- W3167106592 cites W2890830465 @default.
- W3167106592 cites W2891971415 @default.
- W3167106592 cites W2897293986 @default.
- W3167106592 cites W2897913979 @default.
- W3167106592 cites W2903055092 @default.
- W3167106592 cites W2908550500 @default.
- W3167106592 cites W2912000072 @default.
- W3167106592 cites W2914775516 @default.
- W3167106592 cites W3004157915 @default.
- W3167106592 cites W4231410837 @default.
- W3167106592 cites W4252684946 @default.
- W3167106592 cites W2045555164 @default.
- W3167106592 doi "https://doi.org/10.1109/tase.2021.3084741" @default.
- W3167106592 hasPublicationYear "2022" @default.
- W3167106592 type Work @default.
- W3167106592 sameAs 3167106592 @default.
- W3167106592 citedByCount "8" @default.
- W3167106592 countsByYear W31671065922022 @default.
- W3167106592 countsByYear W31671065922023 @default.
- W3167106592 crossrefType "journal-article" @default.
- W3167106592 hasAuthorship W3167106592A5019720353 @default.
- W3167106592 hasAuthorship W3167106592A5042483034 @default.
- W3167106592 hasAuthorship W3167106592A5083039007 @default.
- W3167106592 hasConcept C104317684 @default.
- W3167106592 hasConcept C126255220 @default.
- W3167106592 hasConcept C137836250 @default.
- W3167106592 hasConcept C159149176 @default.
- W3167106592 hasConcept C185592680 @default.
- W3167106592 hasConcept C33923547 @default.
- W3167106592 hasConcept C41008148 @default.
- W3167106592 hasConcept C55493867 @default.
- W3167106592 hasConcept C63479239 @default.
- W3167106592 hasConcept C68781425 @default.
- W3167106592 hasConceptScore W3167106592C104317684 @default.
- W3167106592 hasConceptScore W3167106592C126255220 @default.
- W3167106592 hasConceptScore W3167106592C137836250 @default.
- W3167106592 hasConceptScore W3167106592C159149176 @default.
- W3167106592 hasConceptScore W3167106592C185592680 @default.
- W3167106592 hasConceptScore W3167106592C33923547 @default.
- W3167106592 hasConceptScore W3167106592C41008148 @default.
- W3167106592 hasConceptScore W3167106592C55493867 @default.
- W3167106592 hasConceptScore W3167106592C63479239 @default.
- W3167106592 hasConceptScore W3167106592C68781425 @default.