Matches in SemOpenAlex for { <https://semopenalex.org/work/W3167130310> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3167130310 endingPage "106213" @default.
- W3167130310 startingPage "106213" @default.
- W3167130310 abstract "• Predictability of crashes occurring on different types of freeway sections was compared. • The most critical crash precursors were found for different types of freeway sections. • A threshold selection method for real-time crash prediction was presented based on the cost-benefit theory. • Machine Learning methods were applied to validate the results. Improvement of the prediction efficiency of crash risks has attracted the attention of numerous studies. Nevertheless, one of the most important factors, crash precursors, were neglected. This study mainly focuses on identifying optimal crash precursors for different freeway section types, as well as providing a threshold selection method for real-time crash risk models. Freeway sections are divided into four types, i.e. basic sections, weaving areas, merging areas, and diverging areas. Bayesian logistic regression (BLR) models were established for each type of segment, and significant factors were distinguished. A threshold selection method was proposed based on cost-benefit theory, and the threshold is determined as the value when the number of proactive safety interventions to prevent a crash is 5000 in this study. BLR models with one, two and three optimal variables were developed. Then the sensitivity and false alarm rate of the models were obtained and compared. Comparison results show that the minimum amount of parameters which can achieve the ideal prediction effectiveness is two. In this situation, 25 %, 50 %, 20 % and 20 % of the crashes occurring at basic sections, weaving areas, merging areas and diverging areas can be accurately predicted respectively. Downstream average speed was recommended as the best crash precursor variable for all the segment types. Support Vector Machine and Random Forest were applied to confirm the conclusion. The conclusion of this paper has the possibility to help reduce crash risk to a relatively economical level in practical applications." @default.
- W3167130310 created "2021-06-22" @default.
- W3167130310 creator A5031765645 @default.
- W3167130310 creator A5035742417 @default.
- W3167130310 creator A5063549890 @default.
- W3167130310 creator A5072820659 @default.
- W3167130310 date "2021-09-01" @default.
- W3167130310 modified "2023-10-13" @default.
- W3167130310 title "Investigating the predictability of crashes on different freeway segments using the real-time crash risk models" @default.
- W3167130310 cites W2007473578 @default.
- W3167130310 cites W2014546554 @default.
- W3167130310 cites W2054541664 @default.
- W3167130310 cites W2061344455 @default.
- W3167130310 cites W2068362834 @default.
- W3167130310 cites W2146108992 @default.
- W3167130310 cites W2146432044 @default.
- W3167130310 cites W2150671137 @default.
- W3167130310 cites W2197013543 @default.
- W3167130310 cites W2203247364 @default.
- W3167130310 cites W2217856350 @default.
- W3167130310 cites W2391034617 @default.
- W3167130310 cites W2470307720 @default.
- W3167130310 cites W2473137880 @default.
- W3167130310 cites W2731770569 @default.
- W3167130310 cites W2767486194 @default.
- W3167130310 cites W2782536475 @default.
- W3167130310 cites W2893442230 @default.
- W3167130310 cites W2910624182 @default.
- W3167130310 cites W2911964244 @default.
- W3167130310 cites W3034786770 @default.
- W3167130310 cites W3035530851 @default.
- W3167130310 cites W3083713367 @default.
- W3167130310 cites W3092280107 @default.
- W3167130310 cites W3122380678 @default.
- W3167130310 cites W4235693162 @default.
- W3167130310 doi "https://doi.org/10.1016/j.aap.2021.106213" @default.
- W3167130310 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34089990" @default.
- W3167130310 hasPublicationYear "2021" @default.
- W3167130310 type Work @default.
- W3167130310 sameAs 3167130310 @default.
- W3167130310 citedByCount "15" @default.
- W3167130310 countsByYear W31671303102022 @default.
- W3167130310 countsByYear W31671303102023 @default.
- W3167130310 crossrefType "journal-article" @default.
- W3167130310 hasAuthorship W3167130310A5031765645 @default.
- W3167130310 hasAuthorship W3167130310A5035742417 @default.
- W3167130310 hasAuthorship W3167130310A5063549890 @default.
- W3167130310 hasAuthorship W3167130310A5072820659 @default.
- W3167130310 hasConcept C105795698 @default.
- W3167130310 hasConcept C119857082 @default.
- W3167130310 hasConcept C127413603 @default.
- W3167130310 hasConcept C146978453 @default.
- W3167130310 hasConcept C151956035 @default.
- W3167130310 hasConcept C183469790 @default.
- W3167130310 hasConcept C197640229 @default.
- W3167130310 hasConcept C199360897 @default.
- W3167130310 hasConcept C204323151 @default.
- W3167130310 hasConcept C3017944768 @default.
- W3167130310 hasConcept C33923547 @default.
- W3167130310 hasConcept C41008148 @default.
- W3167130310 hasConcept C71924100 @default.
- W3167130310 hasConcept C81917197 @default.
- W3167130310 hasConcept C99454951 @default.
- W3167130310 hasConceptScore W3167130310C105795698 @default.
- W3167130310 hasConceptScore W3167130310C119857082 @default.
- W3167130310 hasConceptScore W3167130310C127413603 @default.
- W3167130310 hasConceptScore W3167130310C146978453 @default.
- W3167130310 hasConceptScore W3167130310C151956035 @default.
- W3167130310 hasConceptScore W3167130310C183469790 @default.
- W3167130310 hasConceptScore W3167130310C197640229 @default.
- W3167130310 hasConceptScore W3167130310C199360897 @default.
- W3167130310 hasConceptScore W3167130310C204323151 @default.
- W3167130310 hasConceptScore W3167130310C3017944768 @default.
- W3167130310 hasConceptScore W3167130310C33923547 @default.
- W3167130310 hasConceptScore W3167130310C41008148 @default.
- W3167130310 hasConceptScore W3167130310C71924100 @default.
- W3167130310 hasConceptScore W3167130310C81917197 @default.
- W3167130310 hasConceptScore W3167130310C99454951 @default.
- W3167130310 hasFunder F4320321540 @default.
- W3167130310 hasFunder F4320335777 @default.
- W3167130310 hasLocation W31671303101 @default.
- W3167130310 hasOpenAccess W3167130310 @default.
- W3167130310 hasPrimaryLocation W31671303101 @default.
- W3167130310 hasRelatedWork W1527837723 @default.
- W3167130310 hasRelatedWork W1974962040 @default.
- W3167130310 hasRelatedWork W2066319700 @default.
- W3167130310 hasRelatedWork W2118112569 @default.
- W3167130310 hasRelatedWork W2140639095 @default.
- W3167130310 hasRelatedWork W2473137880 @default.
- W3167130310 hasRelatedWork W2899084033 @default.
- W3167130310 hasRelatedWork W3039717196 @default.
- W3167130310 hasRelatedWork W3147009868 @default.
- W3167130310 hasRelatedWork W2108486618 @default.
- W3167130310 hasVolume "159" @default.
- W3167130310 isParatext "false" @default.
- W3167130310 isRetracted "false" @default.
- W3167130310 magId "3167130310" @default.
- W3167130310 workType "article" @default.