Matches in SemOpenAlex for { <https://semopenalex.org/work/W3167187226> ?p ?o ?g. }
- W3167187226 abstract "Stochastic resource allocation problems (SRAPs) involve determining the optimal configuration of a limited resource to achieve an objective function under given constraints and random effects in manufacturing systems (MSs) and service systems (SSs). The problems are traditionally solved by determining the optimal solution. It is generally preferable to determine as many global optima as possible, or at least a small set of diverse but good candidates, to help the decision-maker rapidly adopt alternative solutions from the set if one solution is unsuitable. However, many local or global optima occur in SRAPs in MSs and SSs due to the interaction between random system factors, such as processing time uncertainty and machine failure rates. Thus, enhancing the searching efficiency of algorithms for SRAPs is a challenge. This study proposes an efficient simulation–optimization approach, called elite-based particle swarm optimization (EPSO), using an optimal replication allocation strategy (ORAS) (i.e., EPSO[Formula: see text], to address three types of SRAPs from the literature. Three simulation models were constructed to evaluate the system performance under random factors. We developed a novel EPSO to explore and exploit the solution space. We created an elite group (EG) that includes multiple solutions, and each solution of the EG has a statistically nonsignificant difference from the current optimal solution. The new feature of EPSO updates the velocity and position of the particles in the design space based on multiple global optima from the EG to enhance diversity and prevent premature convergence. We propose an ORAS to allocate a limited number of replications to each solution. Three numerical experiments were performed to verify the effectiveness and efficiency of EPSO[Formula: see text] compared with other simulation–optimization approaches, namely particle swarm optimization (PSO) and the genetic algorithm (GA) with both optimal computing budget allocation (OCBA) and the ORAS. The experimental results reveal that the solution quality of EPSO improved compared with that of PSO and GA, and the ORAS provides a more efficient allocation of the number of replications compared with the OCBA in the three experiments. Finally, the proposed approach also provides an elite set at the end of the algorithm, instead of a single optimal solution, to support decision-making." @default.
- W3167187226 created "2021-06-22" @default.
- W3167187226 creator A5001294574 @default.
- W3167187226 creator A5015623496 @default.
- W3167187226 date "2021-06-21" @default.
- W3167187226 modified "2023-09-26" @default.
- W3167187226 title "An Efficient Elite-Based Simulation–Optimization Approach for Stochastic Resource Allocation Problems in Manufacturing and Service Systems" @default.
- W3167187226 cites W1491412371 @default.
- W3167187226 cites W1536615069 @default.
- W3167187226 cites W1983893021 @default.
- W3167187226 cites W2001510991 @default.
- W3167187226 cites W2025510673 @default.
- W3167187226 cites W2032952036 @default.
- W3167187226 cites W2042928785 @default.
- W3167187226 cites W2046282120 @default.
- W3167187226 cites W2047808226 @default.
- W3167187226 cites W2054222839 @default.
- W3167187226 cites W2057511684 @default.
- W3167187226 cites W2066933614 @default.
- W3167187226 cites W2074339441 @default.
- W3167187226 cites W2096358351 @default.
- W3167187226 cites W2152195021 @default.
- W3167187226 cites W2346967702 @default.
- W3167187226 cites W2442122909 @default.
- W3167187226 cites W2460436721 @default.
- W3167187226 cites W2484647765 @default.
- W3167187226 cites W2530493829 @default.
- W3167187226 cites W2549009051 @default.
- W3167187226 cites W2557702996 @default.
- W3167187226 cites W2613314548 @default.
- W3167187226 cites W2777985434 @default.
- W3167187226 cites W2829992518 @default.
- W3167187226 cites W3128230801 @default.
- W3167187226 cites W4233704985 @default.
- W3167187226 cites W4237029372 @default.
- W3167187226 cites W911028829 @default.
- W3167187226 doi "https://doi.org/10.1142/s0217595921500305" @default.
- W3167187226 hasPublicationYear "2021" @default.
- W3167187226 type Work @default.
- W3167187226 sameAs 3167187226 @default.
- W3167187226 citedByCount "2" @default.
- W3167187226 countsByYear W31671872262022 @default.
- W3167187226 countsByYear W31671872262023 @default.
- W3167187226 crossrefType "journal-article" @default.
- W3167187226 hasAuthorship W3167187226A5001294574 @default.
- W3167187226 hasAuthorship W3167187226A5015623496 @default.
- W3167187226 hasConcept C105795698 @default.
- W3167187226 hasConcept C12590798 @default.
- W3167187226 hasConcept C126255220 @default.
- W3167187226 hasConcept C141934464 @default.
- W3167187226 hasConcept C162324750 @default.
- W3167187226 hasConcept C165696696 @default.
- W3167187226 hasConcept C177264268 @default.
- W3167187226 hasConcept C199360897 @default.
- W3167187226 hasConcept C2777303404 @default.
- W3167187226 hasConcept C29202148 @default.
- W3167187226 hasConcept C31258907 @default.
- W3167187226 hasConcept C33923547 @default.
- W3167187226 hasConcept C38652104 @default.
- W3167187226 hasConcept C41008148 @default.
- W3167187226 hasConcept C42475967 @default.
- W3167187226 hasConcept C50522688 @default.
- W3167187226 hasConcept C58758708 @default.
- W3167187226 hasConcept C85617194 @default.
- W3167187226 hasConceptScore W3167187226C105795698 @default.
- W3167187226 hasConceptScore W3167187226C12590798 @default.
- W3167187226 hasConceptScore W3167187226C126255220 @default.
- W3167187226 hasConceptScore W3167187226C141934464 @default.
- W3167187226 hasConceptScore W3167187226C162324750 @default.
- W3167187226 hasConceptScore W3167187226C165696696 @default.
- W3167187226 hasConceptScore W3167187226C177264268 @default.
- W3167187226 hasConceptScore W3167187226C199360897 @default.
- W3167187226 hasConceptScore W3167187226C2777303404 @default.
- W3167187226 hasConceptScore W3167187226C29202148 @default.
- W3167187226 hasConceptScore W3167187226C31258907 @default.
- W3167187226 hasConceptScore W3167187226C33923547 @default.
- W3167187226 hasConceptScore W3167187226C38652104 @default.
- W3167187226 hasConceptScore W3167187226C41008148 @default.
- W3167187226 hasConceptScore W3167187226C42475967 @default.
- W3167187226 hasConceptScore W3167187226C50522688 @default.
- W3167187226 hasConceptScore W3167187226C58758708 @default.
- W3167187226 hasConceptScore W3167187226C85617194 @default.
- W3167187226 hasIssue "03" @default.
- W3167187226 hasLocation W31671872261 @default.
- W3167187226 hasOpenAccess W3167187226 @default.
- W3167187226 hasPrimaryLocation W31671872261 @default.
- W3167187226 hasRelatedWork W1997069694 @default.
- W3167187226 hasRelatedWork W2008260342 @default.
- W3167187226 hasRelatedWork W2015695516 @default.
- W3167187226 hasRelatedWork W2066992753 @default.
- W3167187226 hasRelatedWork W2090484275 @default.
- W3167187226 hasRelatedWork W2099585286 @default.
- W3167187226 hasRelatedWork W2122222693 @default.
- W3167187226 hasRelatedWork W2383799968 @default.
- W3167187226 hasRelatedWork W2543758842 @default.
- W3167187226 hasRelatedWork W2586739852 @default.
- W3167187226 hasVolume "39" @default.
- W3167187226 isParatext "false" @default.
- W3167187226 isRetracted "false" @default.
- W3167187226 magId "3167187226" @default.