Matches in SemOpenAlex for { <https://semopenalex.org/work/W3167195439> ?p ?o ?g. }
- W3167195439 endingPage "684" @default.
- W3167195439 startingPage "671" @default.
- W3167195439 abstract "Classical brain–computer interface (BCI) systems are moving beyond lab demonstrations to real world applications with the development of associated hardware and software. Brain–computer interaction systems open up a wide range of BCI applications, especially in neural rehabilitation and human cognitive augmentation. Brain–computer intelligence systems reveal promising technologies for a new generation of artificial intelligence (AI) as well as a new generation of BCIs. A brain–computer interface (BCI) establishes a direct communication channel between a brain and an external device. With recent advances in neurotechnology and artificial intelligence (AI), the brain signals in BCI communication have been advanced from sensation and perception to higher-level cognition activities. While the field of BCI has grown rapidly in the past decades, the core technologies and innovative ideas behind seemingly unrelated BCI systems have never been summarized from an evolutionary point of view. Here, we review various BCI paradigms and present an evolutionary model of generalized BCI technology which comprises three stages: interface, interaction, and intelligence (I3). We also highlight challenges, opportunities, and future perspectives in the development of new BCI technology. A brain–computer interface (BCI) establishes a direct communication channel between a brain and an external device. With recent advances in neurotechnology and artificial intelligence (AI), the brain signals in BCI communication have been advanced from sensation and perception to higher-level cognition activities. While the field of BCI has grown rapidly in the past decades, the core technologies and innovative ideas behind seemingly unrelated BCI systems have never been summarized from an evolutionary point of view. Here, we review various BCI paradigms and present an evolutionary model of generalized BCI technology which comprises three stages: interface, interaction, and intelligence (I3). We also highlight challenges, opportunities, and future perspectives in the development of new BCI technology. extend BCI applications from the current laboratory or clinical environment to real daily life by enabling them to function when individuals interact with the environment. real-time BCI systems in which the brain and external devices bidirectionally interact with each other. directly decodes higher-order, goal-oriented cognitive signals to send intuitive BCI commands without goal-irrelevant and indirect thinking. uses flexible, closely spaced subdural grid or strip electrodes that are placed directly on surgically exposed brain surface to measure cortical electrical activity. This technique is characterized by high spatio-temporal resolution, broader bandwidth, and excellent signal-to-noise ratios (SNRs). utilizes electrodes that are placed on the scalp surface to non-invasively measure electrical potentials that arise from activity in the brain. EEG primarily reflects the sum of post-synaptic potentials from cortical neurons. an electrophysiological brain signal that is time-locked to the occurrence of an event. Typically, the latency and amplitude of ERP can be obtained by averaging multiple trials in the time domain. an electrical potential that is caused by the nervous system in response to a sensory stimulus. Various stimuli may generate evoked potentials, but visual, auditory, and somatosensory are the most frequently used stimulus types. utilizes magnetic resonance imaging to noninvasively measure changes in the blood oxygenation level dependent (BOLD) signal as indication for local brain activity. calculates the concentration changes of oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR) in a brain tissue based on the changes of the exiting-photon intensity and the incident-photon intensity, and then characterizes the local neural activity. any system that has direct interaction between the brain and external devices. combines a BCI with another system(s) that utilize other physiological or technical signals. The purpose is to integrate diverse input signals to achieve better BCI performance. a noninvasive imaging technique that utilizes a superconducting quantum interference device (SQUID) to measure extremely weak magnetic fields outside the head. MEG can directly reflect the magnetic field changes caused by cortical neural activity on a millisecond timescale. an interface that derives its output from naturally occurring brain activity during task execution to act as a complementary input providing information about ongoing user mental states (e.g., workload, emotional state, or attention levels). a BCI system based on P300 event-related potential that is a positive deflection at approximately 300 ms after a rare and relevant stimulus. P300 signals can be increased in amplitude when the particular stimulus is given greater attention. a BCI system based on mu (8–12 Hz) and beta (18–26 Hz) oscillations in EEG signals recorded over sensorimotor cortex. The amplitudes of SMRs can be modulated using mental strategy of motor imagery. a BCI system based on very slow variation of the cortical activity. Positive SCPs correlate with mental inhibition and relaxation, whereas negative SCPs coincide with mental preparation. a BCI system based on periodic brain responses induced by repeated visual stimulation. SSVEPs appear as an increase in brain activity at the stimulation frequency and its harmonics." @default.
- W3167195439 created "2021-06-22" @default.
- W3167195439 creator A5000766901 @default.
- W3167195439 creator A5012512740 @default.
- W3167195439 creator A5032039310 @default.
- W3167195439 creator A5073517028 @default.
- W3167195439 date "2021-08-01" @default.
- W3167195439 modified "2023-10-14" @default.
- W3167195439 title "Interface, interaction, and intelligence in generalized brain–computer interfaces" @default.
- W3167195439 cites W1969223073 @default.
- W3167195439 cites W1969596918 @default.
- W3167195439 cites W1970242638 @default.
- W3167195439 cites W1973275441 @default.
- W3167195439 cites W2001342555 @default.
- W3167195439 cites W2008747572 @default.
- W3167195439 cites W2026292399 @default.
- W3167195439 cites W2029915543 @default.
- W3167195439 cites W2032808202 @default.
- W3167195439 cites W2041998778 @default.
- W3167195439 cites W2044455804 @default.
- W3167195439 cites W2062796389 @default.
- W3167195439 cites W2067990570 @default.
- W3167195439 cites W2074165061 @default.
- W3167195439 cites W2075647286 @default.
- W3167195439 cites W2080597220 @default.
- W3167195439 cites W2083019628 @default.
- W3167195439 cites W2084218012 @default.
- W3167195439 cites W2093267429 @default.
- W3167195439 cites W2094125104 @default.
- W3167195439 cites W2096215189 @default.
- W3167195439 cites W2098100592 @default.
- W3167195439 cites W2100535248 @default.
- W3167195439 cites W2106006415 @default.
- W3167195439 cites W2109008357 @default.
- W3167195439 cites W2109886793 @default.
- W3167195439 cites W2110015077 @default.
- W3167195439 cites W2121341398 @default.
- W3167195439 cites W2130076068 @default.
- W3167195439 cites W2130244962 @default.
- W3167195439 cites W2132876794 @default.
- W3167195439 cites W2142501675 @default.
- W3167195439 cites W2161227937 @default.
- W3167195439 cites W2163027455 @default.
- W3167195439 cites W2164497299 @default.
- W3167195439 cites W2167716931 @default.
- W3167195439 cites W2168572392 @default.
- W3167195439 cites W2170968639 @default.
- W3167195439 cites W2342608000 @default.
- W3167195439 cites W2367164125 @default.
- W3167195439 cites W2495352079 @default.
- W3167195439 cites W2509948470 @default.
- W3167195439 cites W2517744119 @default.
- W3167195439 cites W2540507509 @default.
- W3167195439 cites W2566775857 @default.
- W3167195439 cites W2587937998 @default.
- W3167195439 cites W2589385607 @default.
- W3167195439 cites W2598746920 @default.
- W3167195439 cites W2605382099 @default.
- W3167195439 cites W2605492512 @default.
- W3167195439 cites W2736103826 @default.
- W3167195439 cites W2743688646 @default.
- W3167195439 cites W2763859001 @default.
- W3167195439 cites W2766937272 @default.
- W3167195439 cites W2767056600 @default.
- W3167195439 cites W2782859285 @default.
- W3167195439 cites W2786315075 @default.
- W3167195439 cites W2790961768 @default.
- W3167195439 cites W2792707772 @default.
- W3167195439 cites W2794345050 @default.
- W3167195439 cites W2796755741 @default.
- W3167195439 cites W2800223371 @default.
- W3167195439 cites W2802937788 @default.
- W3167195439 cites W2883280128 @default.
- W3167195439 cites W2889319880 @default.
- W3167195439 cites W2891509242 @default.
- W3167195439 cites W2892015226 @default.
- W3167195439 cites W2893394967 @default.
- W3167195439 cites W2897875516 @default.
- W3167195439 cites W2900802277 @default.
- W3167195439 cites W2901418095 @default.
- W3167195439 cites W2901467078 @default.
- W3167195439 cites W2907067670 @default.
- W3167195439 cites W2909141918 @default.
- W3167195439 cites W2912218992 @default.
- W3167195439 cites W2913892853 @default.
- W3167195439 cites W2913911207 @default.
- W3167195439 cites W2915893085 @default.
- W3167195439 cites W2927435888 @default.
- W3167195439 cites W2940585064 @default.
- W3167195439 cites W2945813221 @default.
- W3167195439 cites W2947692275 @default.
- W3167195439 cites W2949263306 @default.
- W3167195439 cites W2963350905 @default.
- W3167195439 cites W2963355311 @default.
- W3167195439 cites W2963977071 @default.
- W3167195439 cites W2964982538 @default.
- W3167195439 cites W2965022797 @default.
- W3167195439 cites W2965382638 @default.