Matches in SemOpenAlex for { <https://semopenalex.org/work/W3167231702> ?p ?o ?g. }
- W3167231702 endingPage "155013" @default.
- W3167231702 startingPage "155013" @default.
- W3167231702 abstract "Compared to conventional computed tomography (CT), spectral CT can provide the capability of material decomposition, which can be used in many clinical diagnosis applications. However, the decomposed images can be very noisy due to the dose limit in CT scanning and the noise magnification of the material decomposition process. To alleviate this situation, we proposed an iterative one-step inversion material decomposition algorithm with a Noise2Noise prior. The algorithm estimated material images directly from projection data and used a Noise2Noise prior for denoising. In contrast to supervised deep learning methods, the designed Noise2Noise prior was built based on self-supervised learning and did not need external data for training. In our method, the data consistency term and the Noise2Noise network were alternatively optimized in the iterative framework, respectively, using a separable quadratic surrogate (SQS) and the Adam algorithm. The proposed iterative algorithm was validated and compared to other methods on simulated spectral CT data, preclinical photon-counting CT data and clinical dual-energy CT data. Quantitative analysis showed that our proposed method performs promisingly on noise suppression and structure detail recovery." @default.
- W3167231702 created "2021-06-22" @default.
- W3167231702 creator A5008118175 @default.
- W3167231702 creator A5008155385 @default.
- W3167231702 creator A5011818543 @default.
- W3167231702 creator A5038806083 @default.
- W3167231702 creator A5051533773 @default.
- W3167231702 creator A5058429770 @default.
- W3167231702 creator A5087606400 @default.
- W3167231702 date "2021-07-27" @default.
- W3167231702 modified "2023-10-17" @default.
- W3167231702 title "Iterative material decomposition for spectral CT using self-supervised Noise2Noise prior" @default.
- W3167231702 cites W1926920987 @default.
- W3167231702 cites W1972037630 @default.
- W3167231702 cites W1972150100 @default.
- W3167231702 cites W1972240851 @default.
- W3167231702 cites W1981418870 @default.
- W3167231702 cites W1988260083 @default.
- W3167231702 cites W2000382546 @default.
- W3167231702 cites W2013586450 @default.
- W3167231702 cites W2040337964 @default.
- W3167231702 cites W2059360236 @default.
- W3167231702 cites W2061287627 @default.
- W3167231702 cites W2063567835 @default.
- W3167231702 cites W2082817771 @default.
- W3167231702 cites W2084789529 @default.
- W3167231702 cites W2085254266 @default.
- W3167231702 cites W2086734311 @default.
- W3167231702 cites W2098092211 @default.
- W3167231702 cites W2102462918 @default.
- W3167231702 cites W2110652437 @default.
- W3167231702 cites W2118916039 @default.
- W3167231702 cites W2143684211 @default.
- W3167231702 cites W2151517435 @default.
- W3167231702 cites W2161631943 @default.
- W3167231702 cites W2164210934 @default.
- W3167231702 cites W2165399609 @default.
- W3167231702 cites W2237473774 @default.
- W3167231702 cites W2239685911 @default.
- W3167231702 cites W2264926311 @default.
- W3167231702 cites W2300533347 @default.
- W3167231702 cites W2347030747 @default.
- W3167231702 cites W2377812826 @default.
- W3167231702 cites W2569379566 @default.
- W3167231702 cites W2574952845 @default.
- W3167231702 cites W2584483805 @default.
- W3167231702 cites W2754956769 @default.
- W3167231702 cites W2768861520 @default.
- W3167231702 cites W2796500552 @default.
- W3167231702 cites W2887572784 @default.
- W3167231702 cites W2889796359 @default.
- W3167231702 cites W2906587342 @default.
- W3167231702 cites W2908579316 @default.
- W3167231702 cites W2939981317 @default.
- W3167231702 cites W2996406547 @default.
- W3167231702 cites W3000752543 @default.
- W3167231702 cites W3008007959 @default.
- W3167231702 cites W3026174455 @default.
- W3167231702 cites W3045244891 @default.
- W3167231702 cites W3092375484 @default.
- W3167231702 cites W3101114211 @default.
- W3167231702 cites W3103329282 @default.
- W3167231702 cites W3103586216 @default.
- W3167231702 cites W3104324122 @default.
- W3167231702 cites W3104900379 @default.
- W3167231702 doi "https://doi.org/10.1088/1361-6560/ac0afd" @default.
- W3167231702 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34126602" @default.
- W3167231702 hasPublicationYear "2021" @default.
- W3167231702 type Work @default.
- W3167231702 sameAs 3167231702 @default.
- W3167231702 citedByCount "15" @default.
- W3167231702 countsByYear W31672317022022 @default.
- W3167231702 countsByYear W31672317022023 @default.
- W3167231702 crossrefType "journal-article" @default.
- W3167231702 hasAuthorship W3167231702A5008118175 @default.
- W3167231702 hasAuthorship W3167231702A5008155385 @default.
- W3167231702 hasAuthorship W3167231702A5011818543 @default.
- W3167231702 hasAuthorship W3167231702A5038806083 @default.
- W3167231702 hasAuthorship W3167231702A5051533773 @default.
- W3167231702 hasAuthorship W3167231702A5058429770 @default.
- W3167231702 hasAuthorship W3167231702A5087606400 @default.
- W3167231702 hasConcept C11413529 @default.
- W3167231702 hasConcept C115961682 @default.
- W3167231702 hasConcept C141379421 @default.
- W3167231702 hasConcept C153180895 @default.
- W3167231702 hasConcept C154945302 @default.
- W3167231702 hasConcept C159694833 @default.
- W3167231702 hasConcept C163294075 @default.
- W3167231702 hasConcept C41008148 @default.
- W3167231702 hasConcept C57493831 @default.
- W3167231702 hasConcept C99498987 @default.
- W3167231702 hasConceptScore W3167231702C11413529 @default.
- W3167231702 hasConceptScore W3167231702C115961682 @default.
- W3167231702 hasConceptScore W3167231702C141379421 @default.
- W3167231702 hasConceptScore W3167231702C153180895 @default.
- W3167231702 hasConceptScore W3167231702C154945302 @default.
- W3167231702 hasConceptScore W3167231702C159694833 @default.
- W3167231702 hasConceptScore W3167231702C163294075 @default.