Matches in SemOpenAlex for { <https://semopenalex.org/work/W3167233563> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W3167233563 endingPage "882" @default.
- W3167233563 startingPage "882" @default.
- W3167233563 abstract "Research have identified large individual variation in physiological response to diet, which has led to more focused investigations in precision nutrition. One approach towards personalized nutrition is to identify groups of differential responders, so called metabotypes (i.e., clusters of individuals with similar metabolic profiles and/or regulation). Metabotyping has previously been addressed using matrix decomposition tools like principal component analysis (PCA) on data organized in matrix form. However, metabotyping using data from more complex experimental designs, involving e.g., repeated measures over time or multiple treatments (tensor data), requires new methods. We developed a workflow for detecting metabotypes from experimental tensor data. The workflow is based on tensor decomposition, specifically PARAFAC which is conceptually similar to PCA but extended to multidimensional data. Metabotypes, based on metabolomics data were identified from PARAFAC scores using k-means clustering and validated by their association to anthropometric and clinical baseline data. Additionally, we evaluated the robustness of the metabotypes using bootstrapping. Furthermore, we applied the workflow to identify metabotypes using data from a crossover acute post-prandial dietary intervention study on 17 overweight males (BMI 25–30 kg/m2, 41–67 y of age) undergoing three dietary interventions (pickled herring, baked herring and baked beef), measuring 80 metabolites (from GC-MS metabolomics) at 8 time points (0–7h). We identified two metabotypes characterized by differences in amino acid levels, predominantly in the beef diet, that were also associated with creatinine (p = 0.007). The metabotype with higher postprandial amino acid levels was also associated with higher fasting creatinine compared to the other metabotype. The results stress the potential of PARAFAC to discover metabotypes from complex study designs. The workflow is not restricted to our data structure and can be applied to any type of tensor data. However, PARAFAC is sensitive to data pre-processing and further studies where differential metabotypes are related to clinical endpoints are highly warranted. This work has been supported by the Swedish Foundation for Strategic Research and Formas, which is gratefully acknowledged." @default.
- W3167233563 created "2021-06-22" @default.
- W3167233563 creator A5038266891 @default.
- W3167233563 creator A5051529023 @default.
- W3167233563 creator A5064086517 @default.
- W3167233563 creator A5075095887 @default.
- W3167233563 creator A5075530576 @default.
- W3167233563 creator A5086691928 @default.
- W3167233563 date "2021-06-01" @default.
- W3167233563 modified "2023-10-04" @default.
- W3167233563 title "Identifying Metabotypes From Complex Biological Data Using PARAFAC" @default.
- W3167233563 doi "https://doi.org/10.1093/cdn/nzab048_017" @default.
- W3167233563 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8181344" @default.
- W3167233563 hasPublicationYear "2021" @default.
- W3167233563 type Work @default.
- W3167233563 sameAs 3167233563 @default.
- W3167233563 citedByCount "3" @default.
- W3167233563 countsByYear W31672335632022 @default.
- W3167233563 countsByYear W31672335632023 @default.
- W3167233563 crossrefType "journal-article" @default.
- W3167233563 hasAuthorship W3167233563A5038266891 @default.
- W3167233563 hasAuthorship W3167233563A5051529023 @default.
- W3167233563 hasAuthorship W3167233563A5064086517 @default.
- W3167233563 hasAuthorship W3167233563A5075095887 @default.
- W3167233563 hasAuthorship W3167233563A5075530576 @default.
- W3167233563 hasAuthorship W3167233563A5086691928 @default.
- W3167233563 hasBestOaLocation W31672335631 @default.
- W3167233563 hasConcept C105795698 @default.
- W3167233563 hasConcept C185592680 @default.
- W3167233563 hasConcept C21565614 @default.
- W3167233563 hasConcept C2781147490 @default.
- W3167233563 hasConcept C31903555 @default.
- W3167233563 hasConcept C33923547 @default.
- W3167233563 hasConcept C43617362 @default.
- W3167233563 hasConcept C71924100 @default.
- W3167233563 hasConceptScore W3167233563C105795698 @default.
- W3167233563 hasConceptScore W3167233563C185592680 @default.
- W3167233563 hasConceptScore W3167233563C21565614 @default.
- W3167233563 hasConceptScore W3167233563C2781147490 @default.
- W3167233563 hasConceptScore W3167233563C31903555 @default.
- W3167233563 hasConceptScore W3167233563C33923547 @default.
- W3167233563 hasConceptScore W3167233563C43617362 @default.
- W3167233563 hasConceptScore W3167233563C71924100 @default.
- W3167233563 hasLocation W31672335631 @default.
- W3167233563 hasLocation W31672335632 @default.
- W3167233563 hasOpenAccess W3167233563 @default.
- W3167233563 hasPrimaryLocation W31672335631 @default.
- W3167233563 hasRelatedWork W2039318446 @default.
- W3167233563 hasRelatedWork W2080531066 @default.
- W3167233563 hasRelatedWork W2148785464 @default.
- W3167233563 hasRelatedWork W2171952168 @default.
- W3167233563 hasRelatedWork W2509231892 @default.
- W3167233563 hasRelatedWork W2748952813 @default.
- W3167233563 hasRelatedWork W2899084033 @default.
- W3167233563 hasRelatedWork W2989314315 @default.
- W3167233563 hasRelatedWork W3032375762 @default.
- W3167233563 hasRelatedWork W4200569237 @default.
- W3167233563 hasVolume "5" @default.
- W3167233563 isParatext "false" @default.
- W3167233563 isRetracted "false" @default.
- W3167233563 magId "3167233563" @default.
- W3167233563 workType "article" @default.