Matches in SemOpenAlex for { <https://semopenalex.org/work/W3167244677> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3167244677 abstract "In cite{butman1976} the linear coding scheme is applied, $X_t =g_tBig(Theta - {bf E}Big{ThetaBig|Y^{t-1}, V_0=v_0Big}Big)$, $t=2,ldots,n$, $X_1=g_1Theta$, with $Theta: Omega to {mathbb R}$, a Gaussian random variable, to derive a lower bound on the feedback rate, for additive Gaussian noise (AGN) channels, $Y_t=X_t+V_t, t=1, ldots, n$, where $V_t$ is a Gaussian autoregressive (AR) noise, and $kappa in [0,infty)$ is the total transmitter power. For the unit memory AR noise, with parameters $(c, K_W)$, where $cin [-1,1]$ is the pole and $K_W$ is the variance of the Gaussian noise, the lower bound is $C^{L,B} =frac{1}{2} log chi^2$, where $chi =lim_{nlongrightarrow infty} chi_n$ is the positive root of $chi^2=1+Big(1+ frac{|c|}{chi}Big)^2 frac{kappa}{K_W}$, and the sequence $chi_n triangleq Big|frac{g_n}{g_{n-1}}Big|, n=2, 3, ldots,$ satisfies a certain recursion, and conjectured that $C^{L,B}$ is the feedback capacity. In this correspondence, it is observed that the nontrivial lower bound $C^{L,B}=frac{1}{2} log chi^2$ such that $chi >1$, necessarily implies the scaling coefficients of the feedback code, $g_n$, $n=1,2, ldots$, grow unbounded, in the sense that, $lim_{nlongrightarrowinfty}|g_n| =+infty$. The unbounded behaviour of $g_n$ follows from the ratio limit theorem of a sequence of real numbers, and it is verified by simulations. It is then concluded that such linear codes are not practical, and fragile with respect to a mismatch between the statistics of the mathematical model of the channel and the real statistics of the channel. In particular, if the error is perturbed by $epsilon_n>0$ no matter how small, then $X_n =g_tBig(Theta - {bf E}Big{ThetaBig|Y^{t-1}, V_0=v_0Big}Big)+g_n epsilon_n$, and $|g_n|epsilon_n longrightarrow infty$, as $n longrightarrow infty$." @default.
- W3167244677 created "2021-06-22" @default.
- W3167244677 creator A5000676115 @default.
- W3167244677 creator A5035087201 @default.
- W3167244677 creator A5038774098 @default.
- W3167244677 date "2021-06-16" @default.
- W3167244677 modified "2023-09-27" @default.
- W3167244677 title "On the Fragile Rates of Linear Feedback Coding Schemes of Gaussian Channels with Memory." @default.
- W3167244677 cites W1508568018 @default.
- W3167244677 cites W1985598067 @default.
- W3167244677 cites W2097415784 @default.
- W3167244677 cites W2115844072 @default.
- W3167244677 cites W2119257920 @default.
- W3167244677 cites W2121551082 @default.
- W3167244677 cites W2142309673 @default.
- W3167244677 cites W2146719334 @default.
- W3167244677 cites W2158130000 @default.
- W3167244677 cites W2175624993 @default.
- W3167244677 cites W2330305113 @default.
- W3167244677 cites W2963400629 @default.
- W3167244677 cites W2964320221 @default.
- W3167244677 cites W2157875630 @default.
- W3167244677 hasPublicationYear "2021" @default.
- W3167244677 type Work @default.
- W3167244677 sameAs 3167244677 @default.
- W3167244677 citedByCount "0" @default.
- W3167244677 crossrefType "posted-content" @default.
- W3167244677 hasAuthorship W3167244677A5000676115 @default.
- W3167244677 hasAuthorship W3167244677A5035087201 @default.
- W3167244677 hasAuthorship W3167244677A5038774098 @default.
- W3167244677 hasConcept C114614502 @default.
- W3167244677 hasConcept C121332964 @default.
- W3167244677 hasConcept C138885662 @default.
- W3167244677 hasConcept C2779557605 @default.
- W3167244677 hasConcept C2780388253 @default.
- W3167244677 hasConcept C33923547 @default.
- W3167244677 hasConcept C41895202 @default.
- W3167244677 hasConcept C62520636 @default.
- W3167244677 hasConceptScore W3167244677C114614502 @default.
- W3167244677 hasConceptScore W3167244677C121332964 @default.
- W3167244677 hasConceptScore W3167244677C138885662 @default.
- W3167244677 hasConceptScore W3167244677C2779557605 @default.
- W3167244677 hasConceptScore W3167244677C2780388253 @default.
- W3167244677 hasConceptScore W3167244677C33923547 @default.
- W3167244677 hasConceptScore W3167244677C41895202 @default.
- W3167244677 hasConceptScore W3167244677C62520636 @default.
- W3167244677 hasLocation W31672446771 @default.
- W3167244677 hasOpenAccess W3167244677 @default.
- W3167244677 hasPrimaryLocation W31672446771 @default.
- W3167244677 hasRelatedWork W1964492749 @default.
- W3167244677 hasRelatedWork W1993278710 @default.
- W3167244677 hasRelatedWork W2020607807 @default.
- W3167244677 hasRelatedWork W2027438742 @default.
- W3167244677 hasRelatedWork W2032069074 @default.
- W3167244677 hasRelatedWork W2047803154 @default.
- W3167244677 hasRelatedWork W2070938164 @default.
- W3167244677 hasRelatedWork W2461720516 @default.
- W3167244677 hasRelatedWork W2481967788 @default.
- W3167244677 hasRelatedWork W2521533236 @default.
- W3167244677 hasRelatedWork W2622909445 @default.
- W3167244677 hasRelatedWork W2785399240 @default.
- W3167244677 hasRelatedWork W2897342870 @default.
- W3167244677 hasRelatedWork W2937044551 @default.
- W3167244677 hasRelatedWork W2949793901 @default.
- W3167244677 hasRelatedWork W2951465737 @default.
- W3167244677 hasRelatedWork W2972967637 @default.
- W3167244677 hasRelatedWork W3111765822 @default.
- W3167244677 hasRelatedWork W3115788513 @default.
- W3167244677 hasRelatedWork W1965722107 @default.
- W3167244677 isParatext "false" @default.
- W3167244677 isRetracted "false" @default.
- W3167244677 magId "3167244677" @default.
- W3167244677 workType "article" @default.