Matches in SemOpenAlex for { <https://semopenalex.org/work/W3167290184> ?p ?o ?g. }
- W3167290184 abstract "Abstract Statistical climate prediction has sometimes demonstrated higher accuracy than coupled dynamical forecast systems. This study tests the applicability of springtime soil moisture (SM) over Europe and sea surface temperatures (SSTs) of three North Atlantic (NA) regions as statistical predictors of European mean summer temperature (t2m). We set up two statistical-learning (SL) frameworks, based on methods commonly applied in climate research. The SL models are trained with gridded products derived from station, reanalysis, and satellite data (ERA-20C, ERA-Land, CERA, COBE2, CRU, and ESA-CCI). The predictive potential of SM anomalies in statistical forecasting had so far remained elusive. Our statistical models trained with SM achieve high summer t2m prediction skill in terms of Pearson correlation coefficient (r), with r≥0.5 over Central and Eastern Europe. Moreover, we find that the reanalysis and satellite SM data contain similar information that can be extracted by our methods and used in fitting the forecast models. Furthermore, the predictive potential of SSTs within different areas in the NA basin was tested. The predictive power of SSTs might increase, as in our case, when specific areas are selected. Forecasts based on extratropical SSTs achieve high prediction skill over South Europe. The combined prediction, using SM and SST predictor data, results in r≥0.5 over all European regions south of 50°N and east of 5°W. This is a better skill than the one achieved by other prediction schemes based on dynamical models. Our analysis highlights specific NA mid-latitude regions that are more strongly connected to summer mean European temperature." @default.
- W3167290184 created "2021-06-22" @default.
- W3167290184 creator A5006977668 @default.
- W3167290184 creator A5019857100 @default.
- W3167290184 creator A5026299709 @default.
- W3167290184 creator A5077603136 @default.
- W3167290184 date "2021-06-10" @default.
- W3167290184 modified "2023-10-13" @default.
- W3167290184 title "Statistical seasonal prediction of European summer mean temperature using observational, reanalysis and satellite data" @default.
- W3167290184 cites W1415424754 @default.
- W3167290184 cites W1752107374 @default.
- W3167290184 cites W1833004937 @default.
- W3167290184 cites W1965500498 @default.
- W3167290184 cites W1977323056 @default.
- W3167290184 cites W1978601068 @default.
- W3167290184 cites W1981780459 @default.
- W3167290184 cites W1985370915 @default.
- W3167290184 cites W2018304142 @default.
- W3167290184 cites W2018608667 @default.
- W3167290184 cites W2022140903 @default.
- W3167290184 cites W2025341678 @default.
- W3167290184 cites W2029351759 @default.
- W3167290184 cites W2040763894 @default.
- W3167290184 cites W2053188159 @default.
- W3167290184 cites W2056825802 @default.
- W3167290184 cites W2064726568 @default.
- W3167290184 cites W2068952517 @default.
- W3167290184 cites W2071128523 @default.
- W3167290184 cites W2071675235 @default.
- W3167290184 cites W2071681633 @default.
- W3167290184 cites W2072705282 @default.
- W3167290184 cites W2075154610 @default.
- W3167290184 cites W2084279619 @default.
- W3167290184 cites W2085147248 @default.
- W3167290184 cites W2097963426 @default.
- W3167290184 cites W2106487197 @default.
- W3167290184 cites W2108344861 @default.
- W3167290184 cites W2124140738 @default.
- W3167290184 cites W2124972241 @default.
- W3167290184 cites W2131234888 @default.
- W3167290184 cites W2131462802 @default.
- W3167290184 cites W2133935134 @default.
- W3167290184 cites W2134303453 @default.
- W3167290184 cites W2135150319 @default.
- W3167290184 cites W2149790062 @default.
- W3167290184 cites W2160581812 @default.
- W3167290184 cites W2175321096 @default.
- W3167290184 cites W2322166108 @default.
- W3167290184 cites W2394879936 @default.
- W3167290184 cites W2405992487 @default.
- W3167290184 cites W2417034474 @default.
- W3167290184 cites W2477994684 @default.
- W3167290184 cites W2513296797 @default.
- W3167290184 cites W2560846835 @default.
- W3167290184 cites W2576064828 @default.
- W3167290184 cites W2589934124 @default.
- W3167290184 cites W2604882439 @default.
- W3167290184 cites W2620762709 @default.
- W3167290184 cites W2622095236 @default.
- W3167290184 cites W2626116453 @default.
- W3167290184 cites W2737609272 @default.
- W3167290184 cites W2739107227 @default.
- W3167290184 cites W2739202118 @default.
- W3167290184 cites W2739522704 @default.
- W3167290184 cites W2759163218 @default.
- W3167290184 cites W2768728801 @default.
- W3167290184 cites W2776706779 @default.
- W3167290184 cites W2776873012 @default.
- W3167290184 cites W2796177330 @default.
- W3167290184 cites W2801985028 @default.
- W3167290184 cites W2889423394 @default.
- W3167290184 cites W2895279794 @default.
- W3167290184 cites W2900303043 @default.
- W3167290184 cites W2903758338 @default.
- W3167290184 cites W2916125934 @default.
- W3167290184 cites W2916889011 @default.
- W3167290184 cites W2947014533 @default.
- W3167290184 cites W2948200844 @default.
- W3167290184 cites W2956255334 @default.
- W3167290184 cites W3010966788 @default.
- W3167290184 cites W3014125413 @default.
- W3167290184 cites W3029542277 @default.
- W3167290184 cites W3034291375 @default.
- W3167290184 cites W3145981634 @default.
- W3167290184 cites W621480186 @default.
- W3167290184 doi "https://doi.org/10.1175/waf-d-20-0235.1" @default.
- W3167290184 hasPublicationYear "2021" @default.
- W3167290184 type Work @default.
- W3167290184 sameAs 3167290184 @default.
- W3167290184 citedByCount "1" @default.
- W3167290184 countsByYear W31672901842023 @default.
- W3167290184 crossrefType "journal-article" @default.
- W3167290184 hasAuthorship W3167290184A5006977668 @default.
- W3167290184 hasAuthorship W3167290184A5019857100 @default.
- W3167290184 hasAuthorship W3167290184A5026299709 @default.
- W3167290184 hasAuthorship W3167290184A5077603136 @default.
- W3167290184 hasBestOaLocation W31672901841 @default.
- W3167290184 hasConcept C105795698 @default.
- W3167290184 hasConcept C107054158 @default.
- W3167290184 hasConcept C111368507 @default.