Matches in SemOpenAlex for { <https://semopenalex.org/work/W3167347301> ?p ?o ?g. }
- W3167347301 abstract "The variational quantum eigensolver (VQE) is one of the most representative quantum algorithms in the noisy intermediate-scale quantum (NISQ) era, and is generally speculated to deliver one of the first quantum advantages for the ground-state simulations of some nontrivial Hamiltonians. However, short quantum coherence time and limited availability of quantum hardware resources in the NISQ hardware strongly restrain the capacity and expressiveness of VQEs. In this Letter, we introduce the variational quantum-neural hybrid eigensolver (VQNHE) in which the shallow-circuit quantum Ansatz can be further enhanced by classical post-processing with neural networks. We show that the VQNHE consistently and significantly outperforms the VQE in simulating ground-state energies of quantum spins and molecules given the same amount of quantum resources. More importantly, we demonstrate that, for arbitrary postprocessing neural functions, the VQNHE only incurs a polynomial overhead of processing time and represents the first scalable method to exponentially accelerate the VQE with nonunitary postprocessing that can be efficiently implemented in the NISQ era." @default.
- W3167347301 created "2021-06-22" @default.
- W3167347301 creator A5008663435 @default.
- W3167347301 creator A5008810579 @default.
- W3167347301 creator A5009852458 @default.
- W3167347301 creator A5047215804 @default.
- W3167347301 creator A5074482769 @default.
- W3167347301 creator A5077333536 @default.
- W3167347301 date "2022-03-24" @default.
- W3167347301 modified "2023-10-14" @default.
- W3167347301 title "Variational Quantum-Neural Hybrid Eigensolver" @default.
- W3167347301 cites W1981590156 @default.
- W3167347301 cites W1989474096 @default.
- W3167347301 cites W2003148879 @default.
- W3167347301 cites W2034731189 @default.
- W3167347301 cites W2061842927 @default.
- W3167347301 cites W2062738866 @default.
- W3167347301 cites W2078252301 @default.
- W3167347301 cites W2161685427 @default.
- W3167347301 cites W2179731956 @default.
- W3167347301 cites W2254754114 @default.
- W3167347301 cites W2257937122 @default.
- W3167347301 cites W2419175238 @default.
- W3167347301 cites W2578080479 @default.
- W3167347301 cites W2755255888 @default.
- W3167347301 cites W2781738013 @default.
- W3167347301 cites W2790388700 @default.
- W3167347301 cites W2797767079 @default.
- W3167347301 cites W2803208764 @default.
- W3167347301 cites W2889126882 @default.
- W3167347301 cites W2903221501 @default.
- W3167347301 cites W2905003072 @default.
- W3167347301 cites W2915569748 @default.
- W3167347301 cites W2954369586 @default.
- W3167347301 cites W2972223037 @default.
- W3167347301 cites W2974416503 @default.
- W3167347301 cites W2975429865 @default.
- W3167347301 cites W2975697068 @default.
- W3167347301 cites W2979788593 @default.
- W3167347301 cites W2989336327 @default.
- W3167347301 cites W2990961515 @default.
- W3167347301 cites W3037443854 @default.
- W3167347301 cites W3039811809 @default.
- W3167347301 cites W3091314820 @default.
- W3167347301 cites W3094595762 @default.
- W3167347301 cites W3099200606 @default.
- W3167347301 cites W3099621369 @default.
- W3167347301 cites W3100148174 @default.
- W3167347301 cites W3100459566 @default.
- W3167347301 cites W3101479050 @default.
- W3167347301 cites W3102900200 @default.
- W3167347301 cites W3103650555 @default.
- W3167347301 cites W3103810096 @default.
- W3167347301 cites W3103872322 @default.
- W3167347301 cites W3104941540 @default.
- W3167347301 cites W3104961823 @default.
- W3167347301 cites W3105543591 @default.
- W3167347301 cites W3108340522 @default.
- W3167347301 cites W3110594610 @default.
- W3167347301 cites W3126953245 @default.
- W3167347301 cites W3128504623 @default.
- W3167347301 cites W3128576672 @default.
- W3167347301 cites W3133733630 @default.
- W3167347301 cites W3135926897 @default.
- W3167347301 cites W3157263083 @default.
- W3167347301 cites W3168595425 @default.
- W3167347301 cites W3189250281 @default.
- W3167347301 cites W3192386363 @default.
- W3167347301 cites W3201056462 @default.
- W3167347301 cites W3207638202 @default.
- W3167347301 cites W3209475097 @default.
- W3167347301 cites W4213212652 @default.
- W3167347301 doi "https://doi.org/10.1103/physrevlett.128.120502" @default.
- W3167347301 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35394326" @default.
- W3167347301 hasPublicationYear "2022" @default.
- W3167347301 type Work @default.
- W3167347301 sameAs 3167347301 @default.
- W3167347301 citedByCount "14" @default.
- W3167347301 countsByYear W31673473012021 @default.
- W3167347301 countsByYear W31673473012022 @default.
- W3167347301 countsByYear W31673473012023 @default.
- W3167347301 crossrefType "journal-article" @default.
- W3167347301 hasAuthorship W3167347301A5008663435 @default.
- W3167347301 hasAuthorship W3167347301A5008810579 @default.
- W3167347301 hasAuthorship W3167347301A5009852458 @default.
- W3167347301 hasAuthorship W3167347301A5047215804 @default.
- W3167347301 hasAuthorship W3167347301A5074482769 @default.
- W3167347301 hasAuthorship W3167347301A5077333536 @default.
- W3167347301 hasBestOaLocation W31673473012 @default.
- W3167347301 hasConcept C11413529 @default.
- W3167347301 hasConcept C121332964 @default.
- W3167347301 hasConcept C124148022 @default.
- W3167347301 hasConcept C130979935 @default.
- W3167347301 hasConcept C137019171 @default.
- W3167347301 hasConcept C154945302 @default.
- W3167347301 hasConcept C41008148 @default.
- W3167347301 hasConcept C459310 @default.
- W3167347301 hasConcept C48044578 @default.
- W3167347301 hasConcept C50644808 @default.
- W3167347301 hasConcept C51003876 @default.