Matches in SemOpenAlex for { <https://semopenalex.org/work/W3167460010> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3167460010 endingPage "999" @default.
- W3167460010 startingPage "999" @default.
- W3167460010 abstract "The paper discusses the estimation and prediction problems for the Nadarajah-Haghighi distribution using progressive type-II censored samples. For the unknown parameters, we first calculate the maximum likelihood estimates through the Expectation–Maximization algorithm. In order to choose the best Bayesian estimator, a loss function must be specified. When the loss is essentially symmetric, it is reasonable to use the square error loss function. However, for some estimation problems, the actual loss is often asymmetric. Therefore, we also need to choose an asymmetric loss function. Under the balanced squared error and symmetric squared error loss functions, the Tierney and Kadane method is used for calculating different kinds of approximate Bayesian estimates. The Metropolis-Hasting algorithm is also provided here. In addition, we construct a variety of interval estimations of the unknown parameters including asymptotic intervals, bootstrap intervals, and highest posterior density intervals using the sample derived from the Metropolis-Hasting algorithm. Furthermore, we compute the point predictions and predictive intervals for a future sample when facing the one-sample and two-sample situations. At last, we compare and appraise the performance of the provided techniques by carrying out a simulation study and analyzing a real rainfall data set." @default.
- W3167460010 created "2021-06-22" @default.
- W3167460010 creator A5000272762 @default.
- W3167460010 creator A5053074333 @default.
- W3167460010 date "2021-06-03" @default.
- W3167460010 modified "2023-10-18" @default.
- W3167460010 title "Estimation and Prediction for Nadarajah-Haghighi Distribution under Progressive Type-II Censoring" @default.
- W3167460010 cites W1973435812 @default.
- W3167460010 cites W2004748763 @default.
- W3167460010 cites W2017696952 @default.
- W3167460010 cites W2043415670 @default.
- W3167460010 cites W2055779904 @default.
- W3167460010 cites W2056760934 @default.
- W3167460010 cites W2075068451 @default.
- W3167460010 cites W2084445655 @default.
- W3167460010 cites W2138309709 @default.
- W3167460010 cites W2315109422 @default.
- W3167460010 cites W2513350305 @default.
- W3167460010 cites W2805837465 @default.
- W3167460010 cites W2948685693 @default.
- W3167460010 cites W3047007589 @default.
- W3167460010 cites W3103184204 @default.
- W3167460010 doi "https://doi.org/10.3390/sym13060999" @default.
- W3167460010 hasPublicationYear "2021" @default.
- W3167460010 type Work @default.
- W3167460010 sameAs 3167460010 @default.
- W3167460010 citedByCount "6" @default.
- W3167460010 countsByYear W31674600102022 @default.
- W3167460010 countsByYear W31674600102023 @default.
- W3167460010 crossrefType "journal-article" @default.
- W3167460010 hasAuthorship W3167460010A5000272762 @default.
- W3167460010 hasAuthorship W3167460010A5053074333 @default.
- W3167460010 hasBestOaLocation W31674600101 @default.
- W3167460010 hasConcept C105795698 @default.
- W3167460010 hasConcept C107673813 @default.
- W3167460010 hasConcept C129848803 @default.
- W3167460010 hasConcept C137668524 @default.
- W3167460010 hasConcept C139945424 @default.
- W3167460010 hasConcept C185429906 @default.
- W3167460010 hasConcept C28826006 @default.
- W3167460010 hasConcept C33923547 @default.
- W3167460010 hasConcept C41426520 @default.
- W3167460010 hasConceptScore W3167460010C105795698 @default.
- W3167460010 hasConceptScore W3167460010C107673813 @default.
- W3167460010 hasConceptScore W3167460010C129848803 @default.
- W3167460010 hasConceptScore W3167460010C137668524 @default.
- W3167460010 hasConceptScore W3167460010C139945424 @default.
- W3167460010 hasConceptScore W3167460010C185429906 @default.
- W3167460010 hasConceptScore W3167460010C28826006 @default.
- W3167460010 hasConceptScore W3167460010C33923547 @default.
- W3167460010 hasConceptScore W3167460010C41426520 @default.
- W3167460010 hasIssue "6" @default.
- W3167460010 hasLocation W31674600101 @default.
- W3167460010 hasLocation W31674600102 @default.
- W3167460010 hasOpenAccess W3167460010 @default.
- W3167460010 hasPrimaryLocation W31674600101 @default.
- W3167460010 hasRelatedWork W106751956 @default.
- W3167460010 hasRelatedWork W1976873809 @default.
- W3167460010 hasRelatedWork W2057722517 @default.
- W3167460010 hasRelatedWork W2082092036 @default.
- W3167460010 hasRelatedWork W2521753262 @default.
- W3167460010 hasRelatedWork W2907746047 @default.
- W3167460010 hasRelatedWork W2942865777 @default.
- W3167460010 hasRelatedWork W3102486286 @default.
- W3167460010 hasRelatedWork W3138889111 @default.
- W3167460010 hasRelatedWork W4252172446 @default.
- W3167460010 hasVolume "13" @default.
- W3167460010 isParatext "false" @default.
- W3167460010 isRetracted "false" @default.
- W3167460010 magId "3167460010" @default.
- W3167460010 workType "article" @default.