Matches in SemOpenAlex for { <https://semopenalex.org/work/W3167582001> ?p ?o ?g. }
- W3167582001 endingPage "1531" @default.
- W3167582001 startingPage "1521" @default.
- W3167582001 abstract "Intracranial aneurysms (IAs) remain a major public health concern and endovascular treatment (EVT) has become a major tool for managing IAs. However, the recurrence rate of IAs after EVT is relatively high, which may lead to the risk for aneurysm re-rupture and re-bleed. Thus, we aimed to develop and assess prediction models based on machine learning (ML) algorithms to predict recurrence risk among patients with IAs after EVT in 6 months. Patient population included patients with IAs after EVT between January 2016 and August 2019 in Hunan Provincial People's Hospital, and an adaptive synthetic (ADASYN) sampling approach was applied for the entire imbalanced dataset. We developed five ML models and assessed the models. In addition, we used SHapley Additive exPlanations (SHAP) and local interpretable model-agnostic explanation (LIME) algorithms to determine the importance of the selected features and interpret the ML models. A total of 425 IAs were enrolled into this study, and 66 (15.5%) of which recurred in 6 months. Among the five ML models, gradient boosting decision tree (GBDT) model performed best. The area under curve (AUC) of the GBDT model on the testing set was 0.842 (sensitivity: 81.2%; specificity: 70.4%). Our study firstly demonstrated that ML-based models can serve as a reliable tool for predicting recurrence risk in patients with IAs after EVT in 6 months, and the GBDT model showed the optimal prediction performance." @default.
- W3167582001 created "2021-06-22" @default.
- W3167582001 creator A5002702175 @default.
- W3167582001 creator A5007118591 @default.
- W3167582001 creator A5013718591 @default.
- W3167582001 creator A5027149538 @default.
- W3167582001 creator A5031117677 @default.
- W3167582001 creator A5032728572 @default.
- W3167582001 creator A5036638655 @default.
- W3167582001 creator A5040096141 @default.
- W3167582001 creator A5056770759 @default.
- W3167582001 creator A5066557197 @default.
- W3167582001 creator A5086533374 @default.
- W3167582001 creator A5090351184 @default.
- W3167582001 date "2021-10-18" @default.
- W3167582001 modified "2023-09-29" @default.
- W3167582001 title "Development and assessment of machine learning models for predicting recurrence risk after endovascular treatment in patients with intracranial aneurysms" @default.
- W3167582001 cites W1991385448 @default.
- W3167582001 cites W1992493351 @default.
- W3167582001 cites W1995497817 @default.
- W3167582001 cites W2012834265 @default.
- W3167582001 cites W2040009995 @default.
- W3167582001 cites W2090896340 @default.
- W3167582001 cites W2105995168 @default.
- W3167582001 cites W2123799355 @default.
- W3167582001 cites W2131196051 @default.
- W3167582001 cites W2132173906 @default.
- W3167582001 cites W2132610783 @default.
- W3167582001 cites W2148160442 @default.
- W3167582001 cites W2177870565 @default.
- W3167582001 cites W2280885176 @default.
- W3167582001 cites W2328073750 @default.
- W3167582001 cites W2515083315 @default.
- W3167582001 cites W2625516121 @default.
- W3167582001 cites W2703427529 @default.
- W3167582001 cites W2792248972 @default.
- W3167582001 cites W2811501961 @default.
- W3167582001 cites W2891985432 @default.
- W3167582001 cites W2897124762 @default.
- W3167582001 cites W2901796283 @default.
- W3167582001 cites W2904479692 @default.
- W3167582001 cites W2934399013 @default.
- W3167582001 cites W2941434768 @default.
- W3167582001 cites W2946535957 @default.
- W3167582001 cites W2952357272 @default.
- W3167582001 cites W2973049920 @default.
- W3167582001 cites W2986300209 @default.
- W3167582001 cites W2987857384 @default.
- W3167582001 cites W2996551636 @default.
- W3167582001 cites W3022797196 @default.
- W3167582001 cites W3087475537 @default.
- W3167582001 cites W3113619380 @default.
- W3167582001 cites W4235429873 @default.
- W3167582001 doi "https://doi.org/10.1007/s10143-021-01665-4" @default.
- W3167582001 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34657975" @default.
- W3167582001 hasPublicationYear "2021" @default.
- W3167582001 type Work @default.
- W3167582001 sameAs 3167582001 @default.
- W3167582001 citedByCount "2" @default.
- W3167582001 countsByYear W31675820012022 @default.
- W3167582001 countsByYear W31675820012023 @default.
- W3167582001 crossrefType "journal-article" @default.
- W3167582001 hasAuthorship W3167582001A5002702175 @default.
- W3167582001 hasAuthorship W3167582001A5007118591 @default.
- W3167582001 hasAuthorship W3167582001A5013718591 @default.
- W3167582001 hasAuthorship W3167582001A5027149538 @default.
- W3167582001 hasAuthorship W3167582001A5031117677 @default.
- W3167582001 hasAuthorship W3167582001A5032728572 @default.
- W3167582001 hasAuthorship W3167582001A5036638655 @default.
- W3167582001 hasAuthorship W3167582001A5040096141 @default.
- W3167582001 hasAuthorship W3167582001A5056770759 @default.
- W3167582001 hasAuthorship W3167582001A5066557197 @default.
- W3167582001 hasAuthorship W3167582001A5086533374 @default.
- W3167582001 hasAuthorship W3167582001A5090351184 @default.
- W3167582001 hasBestOaLocation W31675820012 @default.
- W3167582001 hasConcept C119857082 @default.
- W3167582001 hasConcept C126322002 @default.
- W3167582001 hasConcept C126838900 @default.
- W3167582001 hasConcept C12770488 @default.
- W3167582001 hasConcept C154945302 @default.
- W3167582001 hasConcept C2908647359 @default.
- W3167582001 hasConcept C41008148 @default.
- W3167582001 hasConcept C71924100 @default.
- W3167582001 hasConcept C84525736 @default.
- W3167582001 hasConcept C99454951 @default.
- W3167582001 hasConceptScore W3167582001C119857082 @default.
- W3167582001 hasConceptScore W3167582001C126322002 @default.
- W3167582001 hasConceptScore W3167582001C126838900 @default.
- W3167582001 hasConceptScore W3167582001C12770488 @default.
- W3167582001 hasConceptScore W3167582001C154945302 @default.
- W3167582001 hasConceptScore W3167582001C2908647359 @default.
- W3167582001 hasConceptScore W3167582001C41008148 @default.
- W3167582001 hasConceptScore W3167582001C71924100 @default.
- W3167582001 hasConceptScore W3167582001C84525736 @default.
- W3167582001 hasConceptScore W3167582001C99454951 @default.
- W3167582001 hasFunder F4320321001 @default.
- W3167582001 hasFunder F4320326182 @default.
- W3167582001 hasFunder F4320327777 @default.