Matches in SemOpenAlex for { <https://semopenalex.org/work/W3167647269> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3167647269 abstract "This report provides a description and performance evaluation of the optimization techniques for high performance computing (HPC) implementation of the open source Computational Materials mini-application Aladyn (https://github.com/nasa/aladyn). Aladyn is a basic molecular dynamics code written in FORTRAN 2003, which is designed to demonstrate the use of adaptive neural networks (ANNs) in atomistic simulations. The role of ANNs is to efficiently reproduce the very complex energy landscape resulting from the atomic interactions in materials with the accuracy of the more expensive quantum mechanics-based calculations. The ANN is trained on a large set of atomic structures calculated using the density functional theory (DFT) method. While achieving orders of magnitude faster computational performance than DFT, the ANN-based approach was still very computationally demanding compared to the conventional approach of using empirically fitted energy functions. After its initial development, Aladyn was evaluated and optimized by experts at the NASA Advanced Supercomputing (NAS) division to exploit modern supercomputer architectures. The code has been optimized for execution on multicore central processing units (CPUs), including Intel® Skylake microarchitecture, and on graphic accelerators, such as Nvidia® V100 graphic processing units (GPUs), using Open Multi-Processing (OpenMP) and Open Accelerators (OpenACC) programming interfaces. The optimization achieved a speedup of 4.7 times the baseline version on CPU performance and an additional 2.4 times on CPU+GPU performance.Atomistic computer simulations are a fundamental tool in materials research to modelmaterial properties form physics-based first principles. Atomic interaction, governed byQuantum Mechanics (QM) require sophisticated and highly computationally demandingmathematical models to calculate [1]. Classical methods use approximate functional forms,empirically fitted through a set of variable parameters to emulate atomic energies as directfunctions of atomic coordinates [2]. While empirical potentials are computationally muchsimpler, allowing simulations of large-scale systems of up to a trillion (1012) atoms [3],they are substantially less accurate compared to quantum calculations and applicable onlyto very specific atomic configurations or predefined crystallographic phases. A recentlysuggested approach is to use heuristic machine learning methods [4], such as those basedon Adaptive Neural Networks (ANNs) to predict atomic energies, after being trained on asufficiently large database of QM-calculated structures [5,6]. This approach reducessignificantly the computational complexity, allowing for simulations of orders ofmagnitude larger systems compared to QM-based methods without compromisingaccuracy. Still, compared to classical methods using empirical energy functions, ANNmethods remain two- to three orders of magnitude more computationally demanding.Hence, the computational cost of simulations, together with the need for extensive trainingof ANNs, still makes the practical implementation of ANN-based methods quitechallenging.The purpose of the Aladyn mini-application software [7], available as open source at https://github.com/nasa/aladyn, is to be a testbed for exploring possible optimizationstrategies to develop highly scalable parallel algorithms for ANN-based atomisticsimulations. Aladyn is aimed at utilizing the architecture of the high-end modern highperformancecomputing (HPC) hardware based on multicore central processing units(CPUs) equipped with graphic processing unit (GPU) accelerators. Specifically, the goalis to optimize the performance on a single HPC compute node, before implementingscaling to multi-node parallelization using message passing interface (MPI). At the sametime, the open source code of Aladyn can serve as a training model for students andprofessors in academia." @default.
- W3167647269 created "2021-06-22" @default.
- W3167647269 creator A5013359582 @default.
- W3167647269 creator A5027106680 @default.
- W3167647269 creator A5034745890 @default.
- W3167647269 creator A5058582694 @default.
- W3167647269 creator A5074781496 @default.
- W3167647269 date "2019-09-01" @default.
- W3167647269 modified "2023-09-27" @default.
- W3167647269 title "High-Performance Computing Optimization for Aladyn – Adaptive Neural Network Molecular Dynamics Mini-Application" @default.
- W3167647269 cites W1993865156 @default.
- W3167647269 cites W2025444507 @default.
- W3167647269 cites W2104766043 @default.
- W3167647269 cites W2503343131 @default.
- W3167647269 cites W3097798248 @default.
- W3167647269 hasPublicationYear "2019" @default.
- W3167647269 type Work @default.
- W3167647269 sameAs 3167647269 @default.
- W3167647269 citedByCount "0" @default.
- W3167647269 crossrefType "journal-article" @default.
- W3167647269 hasAuthorship W3167647269A5013359582 @default.
- W3167647269 hasAuthorship W3167647269A5027106680 @default.
- W3167647269 hasAuthorship W3167647269A5034745890 @default.
- W3167647269 hasAuthorship W3167647269A5058582694 @default.
- W3167647269 hasAuthorship W3167647269A5074781496 @default.
- W3167647269 hasConcept C111919701 @default.
- W3167647269 hasConcept C131053463 @default.
- W3167647269 hasConcept C154945302 @default.
- W3167647269 hasConcept C169590947 @default.
- W3167647269 hasConcept C173608175 @default.
- W3167647269 hasConcept C177264268 @default.
- W3167647269 hasConcept C199360897 @default.
- W3167647269 hasConcept C2776760102 @default.
- W3167647269 hasConcept C2778119891 @default.
- W3167647269 hasConcept C2778241615 @default.
- W3167647269 hasConcept C2781335571 @default.
- W3167647269 hasConcept C41008148 @default.
- W3167647269 hasConcept C459310 @default.
- W3167647269 hasConcept C49154492 @default.
- W3167647269 hasConcept C50644808 @default.
- W3167647269 hasConcept C68339613 @default.
- W3167647269 hasConcept C78766204 @default.
- W3167647269 hasConcept C83283714 @default.
- W3167647269 hasConceptScore W3167647269C111919701 @default.
- W3167647269 hasConceptScore W3167647269C131053463 @default.
- W3167647269 hasConceptScore W3167647269C154945302 @default.
- W3167647269 hasConceptScore W3167647269C169590947 @default.
- W3167647269 hasConceptScore W3167647269C173608175 @default.
- W3167647269 hasConceptScore W3167647269C177264268 @default.
- W3167647269 hasConceptScore W3167647269C199360897 @default.
- W3167647269 hasConceptScore W3167647269C2776760102 @default.
- W3167647269 hasConceptScore W3167647269C2778119891 @default.
- W3167647269 hasConceptScore W3167647269C2778241615 @default.
- W3167647269 hasConceptScore W3167647269C2781335571 @default.
- W3167647269 hasConceptScore W3167647269C41008148 @default.
- W3167647269 hasConceptScore W3167647269C459310 @default.
- W3167647269 hasConceptScore W3167647269C49154492 @default.
- W3167647269 hasConceptScore W3167647269C50644808 @default.
- W3167647269 hasConceptScore W3167647269C68339613 @default.
- W3167647269 hasConceptScore W3167647269C78766204 @default.
- W3167647269 hasConceptScore W3167647269C83283714 @default.
- W3167647269 hasLocation W31676472691 @default.
- W3167647269 hasOpenAccess W3167647269 @default.
- W3167647269 hasPrimaryLocation W31676472691 @default.
- W3167647269 hasRelatedWork W1966646528 @default.
- W3167647269 hasRelatedWork W2042758279 @default.
- W3167647269 hasRelatedWork W2106821446 @default.
- W3167647269 hasRelatedWork W2137963118 @default.
- W3167647269 hasRelatedWork W2162676275 @default.
- W3167647269 hasRelatedWork W2312533264 @default.
- W3167647269 hasRelatedWork W2575521048 @default.
- W3167647269 hasRelatedWork W2766604154 @default.
- W3167647269 hasRelatedWork W2768298493 @default.
- W3167647269 hasRelatedWork W2783570363 @default.
- W3167647269 hasRelatedWork W2788361577 @default.
- W3167647269 hasRelatedWork W2902947083 @default.
- W3167647269 hasRelatedWork W2965953718 @default.
- W3167647269 hasRelatedWork W2985201073 @default.
- W3167647269 hasRelatedWork W3099332271 @default.
- W3167647269 hasRelatedWork W3099910834 @default.
- W3167647269 hasRelatedWork W3158607448 @default.
- W3167647269 hasRelatedWork W3172692712 @default.
- W3167647269 hasRelatedWork W2115076990 @default.
- W3167647269 hasRelatedWork W3124227027 @default.
- W3167647269 isParatext "false" @default.
- W3167647269 isRetracted "false" @default.
- W3167647269 magId "3167647269" @default.
- W3167647269 workType "article" @default.