Matches in SemOpenAlex for { <https://semopenalex.org/work/W3167655275> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3167655275 endingPage "100205" @default.
- W3167655275 startingPage "100205" @default.
- W3167655275 abstract "Chewing side preference means a tendency to use one side to chew food more frequently than the other. Medical studies show that chewing side preference can result in lateral facial asymmetry, teeth abrasion, temporomandibular disorders, malocclusion, and stomach illness. To continuously detect chewing side preference and quantify its severity in daily life, several wearable sensor-based methods have been proposed in recent years. However, these methods are either intrusive or not fine-grained enough. In this paper, we propose a wearable motion sensor-based chewing side detection method. We observe that chewing activity generates mastication muscle bulge and skull vibration, which can be sensed by motion sensors worn on the mastication muscles. In addition, the muscle bulge and skull vibration of the chewing side are different from those of the non-chewing side. These observations motivate us to deploy motion sensors on the left and right temporalis muscles to detect chewing sides. We propose a heuristic-rules based method to exclude non-chewing data and segment each chew accurately. The relative difference series of the left and right sensors are then calculated to characterize the difference of muscle bulge and skull vibration between the chewing side and the non-chewing side. A two-class classifier is trained using long short-term memory (LSTM), an artificial recurrent neural network, to model the data samples and classify chewing sides. A real-world evaluation dataset of eight food types is collected from eight human subjects. The average detection accuracy reaches 84.8%. The highest detection accuracy for a single subject is up to 97.4%." @default.
- W3167655275 created "2021-06-22" @default.
- W3167655275 creator A5009503613 @default.
- W3167655275 creator A5029817092 @default.
- W3167655275 creator A5054814122 @default.
- W3167655275 creator A5064041906 @default.
- W3167655275 creator A5064680456 @default.
- W3167655275 creator A5082666439 @default.
- W3167655275 date "2021-07-01" @default.
- W3167655275 modified "2023-09-27" @default.
- W3167655275 title "Wearable motion sensor-based chewing side detection" @default.
- W3167655275 cites W1984048727 @default.
- W3167655275 cites W1989631083 @default.
- W3167655275 cites W2032121404 @default.
- W3167655275 cites W2040303864 @default.
- W3167655275 cites W2041463915 @default.
- W3167655275 cites W2072035003 @default.
- W3167655275 cites W2073507047 @default.
- W3167655275 cites W2073656105 @default.
- W3167655275 cites W2089455208 @default.
- W3167655275 cites W2128506691 @default.
- W3167655275 cites W2145388868 @default.
- W3167655275 cites W2150522905 @default.
- W3167655275 cites W2163284149 @default.
- W3167655275 cites W2163958786 @default.
- W3167655275 cites W2169159993 @default.
- W3167655275 cites W2172231309 @default.
- W3167655275 cites W2581273436 @default.
- W3167655275 cites W2609956602 @default.
- W3167655275 cites W2626799558 @default.
- W3167655275 cites W2791798115 @default.
- W3167655275 cites W2815783583 @default.
- W3167655275 doi "https://doi.org/10.1016/j.smhl.2021.100205" @default.
- W3167655275 hasPublicationYear "2021" @default.
- W3167655275 type Work @default.
- W3167655275 sameAs 3167655275 @default.
- W3167655275 citedByCount "1" @default.
- W3167655275 countsByYear W31676552752022 @default.
- W3167655275 crossrefType "journal-article" @default.
- W3167655275 hasAuthorship W3167655275A5009503613 @default.
- W3167655275 hasAuthorship W3167655275A5029817092 @default.
- W3167655275 hasAuthorship W3167655275A5054814122 @default.
- W3167655275 hasAuthorship W3167655275A5064041906 @default.
- W3167655275 hasAuthorship W3167655275A5064680456 @default.
- W3167655275 hasAuthorship W3167655275A5082666439 @default.
- W3167655275 hasBestOaLocation W31676552751 @default.
- W3167655275 hasConcept C154758884 @default.
- W3167655275 hasConcept C154945302 @default.
- W3167655275 hasConcept C199343813 @default.
- W3167655275 hasConcept C29694066 @default.
- W3167655275 hasConcept C31972630 @default.
- W3167655275 hasConcept C41008148 @default.
- W3167655275 hasConcept C71924100 @default.
- W3167655275 hasConceptScore W3167655275C154758884 @default.
- W3167655275 hasConceptScore W3167655275C154945302 @default.
- W3167655275 hasConceptScore W3167655275C199343813 @default.
- W3167655275 hasConceptScore W3167655275C29694066 @default.
- W3167655275 hasConceptScore W3167655275C31972630 @default.
- W3167655275 hasConceptScore W3167655275C41008148 @default.
- W3167655275 hasConceptScore W3167655275C71924100 @default.
- W3167655275 hasFunder F4320306076 @default.
- W3167655275 hasLocation W31676552751 @default.
- W3167655275 hasOpenAccess W3167655275 @default.
- W3167655275 hasPrimaryLocation W31676552751 @default.
- W3167655275 hasRelatedWork W2038794996 @default.
- W3167655275 hasRelatedWork W2060257915 @default.
- W3167655275 hasRelatedWork W2349882270 @default.
- W3167655275 hasRelatedWork W2362075355 @default.
- W3167655275 hasRelatedWork W2415667804 @default.
- W3167655275 hasRelatedWork W2739509748 @default.
- W3167655275 hasRelatedWork W2898044248 @default.
- W3167655275 hasRelatedWork W3099369886 @default.
- W3167655275 hasRelatedWork W4212915890 @default.
- W3167655275 hasRelatedWork W2770155029 @default.
- W3167655275 hasVolume "21" @default.
- W3167655275 isParatext "false" @default.
- W3167655275 isRetracted "false" @default.
- W3167655275 magId "3167655275" @default.
- W3167655275 workType "article" @default.