Matches in SemOpenAlex for { <https://semopenalex.org/work/W3167673500> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W3167673500 abstract "Matching is almost the first and most fundamental step in recommender systems, that is to quickly select hundreds or thousands of related entities from the whole commodity pool. Among all the matching methods, item-to-item (I2I) graph based matching is a handy and highly effective approach and is widely used in most applications, owing to the essential relationships of entities described in a powerful I2I graph. Yet, the I2I graph is not a ready-made product in a data source. To obtain it from users' behaviors, a common practice in the industry is to construct the graph based on the similarity of item embeddings or co-occurrence frequency directly. However, these methods tend to lose the complicated correlations (high-ordered or nonlinear) inside decision-making actions and cannot achieve the global optimal solution. Moreover, the correlations between items are usually contained in users' short-term actions, which are full of noise information (e.g. spurious association, missing connection). It is vitally important to filter out noise while generating the graph. In this paper, we propose a novel framework called Purified Graph Generation (PGG) dedicated to learn faithful I2I graph from sparse and noisy behavior data. We capture the 'confidence value' between user and item to get rid of exception action during decision making, and leverage it to re-sample purified sets that are fed into an unsupervised I2I graph structure learning framework called GPBG. Extensive experimental results from both simulation and real data demonstrate that our method could significantly benefit the performance of I2I graph compared to the typical baselines." @default.
- W3167673500 created "2021-06-22" @default.
- W3167673500 creator A5009228005 @default.
- W3167673500 creator A5014307770 @default.
- W3167673500 creator A5036357902 @default.
- W3167673500 creator A5049225160 @default.
- W3167673500 creator A5057317525 @default.
- W3167673500 creator A5058540877 @default.
- W3167673500 creator A5090270861 @default.
- W3167673500 date "2021-08-14" @default.
- W3167673500 modified "2023-09-30" @default.
- W3167673500 title "Purify and Generate: Learning Faithful Item-to-Item Graph from Noisy User-Item Interaction Behaviors" @default.
- W3167673500 cites W2158018156 @default.
- W3167673500 cites W2963522561 @default.
- W3167673500 cites W2963601856 @default.
- W3167673500 cites W3045200674 @default.
- W3167673500 cites W3166827814 @default.
- W3167673500 doi "https://doi.org/10.1145/3447548.3467205" @default.
- W3167673500 hasPublicationYear "2021" @default.
- W3167673500 type Work @default.
- W3167673500 sameAs 3167673500 @default.
- W3167673500 citedByCount "2" @default.
- W3167673500 countsByYear W31676735002023 @default.
- W3167673500 crossrefType "proceedings-article" @default.
- W3167673500 hasAuthorship W3167673500A5009228005 @default.
- W3167673500 hasAuthorship W3167673500A5014307770 @default.
- W3167673500 hasAuthorship W3167673500A5036357902 @default.
- W3167673500 hasAuthorship W3167673500A5049225160 @default.
- W3167673500 hasAuthorship W3167673500A5057317525 @default.
- W3167673500 hasAuthorship W3167673500A5058540877 @default.
- W3167673500 hasAuthorship W3167673500A5090270861 @default.
- W3167673500 hasConcept C119857082 @default.
- W3167673500 hasConcept C124101348 @default.
- W3167673500 hasConcept C132525143 @default.
- W3167673500 hasConcept C153083717 @default.
- W3167673500 hasConcept C154945302 @default.
- W3167673500 hasConcept C21569690 @default.
- W3167673500 hasConcept C23123220 @default.
- W3167673500 hasConcept C41008148 @default.
- W3167673500 hasConcept C557471498 @default.
- W3167673500 hasConcept C80444323 @default.
- W3167673500 hasConcept C97256817 @default.
- W3167673500 hasConceptScore W3167673500C119857082 @default.
- W3167673500 hasConceptScore W3167673500C124101348 @default.
- W3167673500 hasConceptScore W3167673500C132525143 @default.
- W3167673500 hasConceptScore W3167673500C153083717 @default.
- W3167673500 hasConceptScore W3167673500C154945302 @default.
- W3167673500 hasConceptScore W3167673500C21569690 @default.
- W3167673500 hasConceptScore W3167673500C23123220 @default.
- W3167673500 hasConceptScore W3167673500C41008148 @default.
- W3167673500 hasConceptScore W3167673500C557471498 @default.
- W3167673500 hasConceptScore W3167673500C80444323 @default.
- W3167673500 hasConceptScore W3167673500C97256817 @default.
- W3167673500 hasLocation W31676735001 @default.
- W3167673500 hasOpenAccess W3167673500 @default.
- W3167673500 hasPrimaryLocation W31676735001 @default.
- W3167673500 hasRelatedWork W1773619406 @default.
- W3167673500 hasRelatedWork W2075040002 @default.
- W3167673500 hasRelatedWork W2126026531 @default.
- W3167673500 hasRelatedWork W2348159088 @default.
- W3167673500 hasRelatedWork W2369194530 @default.
- W3167673500 hasRelatedWork W2377968345 @default.
- W3167673500 hasRelatedWork W2402445420 @default.
- W3167673500 hasRelatedWork W2511071455 @default.
- W3167673500 hasRelatedWork W2975456086 @default.
- W3167673500 hasRelatedWork W2977378428 @default.
- W3167673500 isParatext "false" @default.
- W3167673500 isRetracted "false" @default.
- W3167673500 magId "3167673500" @default.
- W3167673500 workType "article" @default.