Matches in SemOpenAlex for { <https://semopenalex.org/work/W3167921459> ?p ?o ?g. }
- W3167921459 endingPage "166" @default.
- W3167921459 startingPage "155" @default.
- W3167921459 abstract "Due to the emergence of sensing technology, a large number of sensors is used to monitor the health state of manufacturing equipment, thus enhancing the capabilities of predicting abnormal behaviours in (near) real-time. However, existing algorithms in predictive maintenance suffer from several limitations related to their scalability, efficiency, and reliability preventing their wide application to various industries. This paper proposes an approach for real-time prediction of the equipment health state using time-domain features extraction, Long Short-Term Memory (LSTM) Neural Networks, and Bayesian Online Changepoint Detection (BOCD). The proposed approach is applied to a real-life case in the steel industry and extensive experiments are performed. The paper also discusses the results and the conclusions drawn from the proposed approach." @default.
- W3167921459 created "2021-06-22" @default.
- W3167921459 creator A5000112022 @default.
- W3167921459 creator A5050638604 @default.
- W3167921459 creator A5081944841 @default.
- W3167921459 creator A5083828292 @default.
- W3167921459 date "2021-01-01" @default.
- W3167921459 modified "2023-10-18" @default.
- W3167921459 title "Real-Time Equipment Health State Prediction with LSTM Networks and Bayesian Inference" @default.
- W3167921459 cites W2048423227 @default.
- W3167921459 cites W2617137613 @default.
- W3167921459 cites W2736470268 @default.
- W3167921459 cites W2744067593 @default.
- W3167921459 cites W2759531725 @default.
- W3167921459 cites W2769063597 @default.
- W3167921459 cites W2791694051 @default.
- W3167921459 cites W2799611748 @default.
- W3167921459 cites W2805330622 @default.
- W3167921459 cites W2890707978 @default.
- W3167921459 cites W2897557170 @default.
- W3167921459 cites W2899143662 @default.
- W3167921459 cites W2906713437 @default.
- W3167921459 cites W2917169831 @default.
- W3167921459 cites W2919710279 @default.
- W3167921459 cites W2944364052 @default.
- W3167921459 cites W2947621394 @default.
- W3167921459 cites W2952589828 @default.
- W3167921459 cites W2970289234 @default.
- W3167921459 cites W2995450656 @default.
- W3167921459 cites W3009436815 @default.
- W3167921459 cites W3021048621 @default.
- W3167921459 cites W3035880113 @default.
- W3167921459 cites W3049466805 @default.
- W3167921459 cites W3089341989 @default.
- W3167921459 cites W3117225605 @default.
- W3167921459 cites W4235882667 @default.
- W3167921459 doi "https://doi.org/10.1007/978-3-030-79022-6_13" @default.
- W3167921459 hasPublicationYear "2021" @default.
- W3167921459 type Work @default.
- W3167921459 sameAs 3167921459 @default.
- W3167921459 citedByCount "0" @default.
- W3167921459 crossrefType "book-chapter" @default.
- W3167921459 hasAuthorship W3167921459A5000112022 @default.
- W3167921459 hasAuthorship W3167921459A5050638604 @default.
- W3167921459 hasAuthorship W3167921459A5081944841 @default.
- W3167921459 hasAuthorship W3167921459A5083828292 @default.
- W3167921459 hasConcept C107673813 @default.
- W3167921459 hasConcept C11413529 @default.
- W3167921459 hasConcept C119857082 @default.
- W3167921459 hasConcept C121332964 @default.
- W3167921459 hasConcept C124101348 @default.
- W3167921459 hasConcept C127413603 @default.
- W3167921459 hasConcept C133488467 @default.
- W3167921459 hasConcept C134306372 @default.
- W3167921459 hasConcept C147168706 @default.
- W3167921459 hasConcept C154945302 @default.
- W3167921459 hasConcept C160234255 @default.
- W3167921459 hasConcept C163258240 @default.
- W3167921459 hasConcept C200601418 @default.
- W3167921459 hasConcept C2776214188 @default.
- W3167921459 hasConcept C33724603 @default.
- W3167921459 hasConcept C33923547 @default.
- W3167921459 hasConcept C36503486 @default.
- W3167921459 hasConcept C41008148 @default.
- W3167921459 hasConcept C43214815 @default.
- W3167921459 hasConcept C48044578 @default.
- W3167921459 hasConcept C48103436 @default.
- W3167921459 hasConcept C50644808 @default.
- W3167921459 hasConcept C62520636 @default.
- W3167921459 hasConcept C77088390 @default.
- W3167921459 hasConceptScore W3167921459C107673813 @default.
- W3167921459 hasConceptScore W3167921459C11413529 @default.
- W3167921459 hasConceptScore W3167921459C119857082 @default.
- W3167921459 hasConceptScore W3167921459C121332964 @default.
- W3167921459 hasConceptScore W3167921459C124101348 @default.
- W3167921459 hasConceptScore W3167921459C127413603 @default.
- W3167921459 hasConceptScore W3167921459C133488467 @default.
- W3167921459 hasConceptScore W3167921459C134306372 @default.
- W3167921459 hasConceptScore W3167921459C147168706 @default.
- W3167921459 hasConceptScore W3167921459C154945302 @default.
- W3167921459 hasConceptScore W3167921459C160234255 @default.
- W3167921459 hasConceptScore W3167921459C163258240 @default.
- W3167921459 hasConceptScore W3167921459C200601418 @default.
- W3167921459 hasConceptScore W3167921459C2776214188 @default.
- W3167921459 hasConceptScore W3167921459C33724603 @default.
- W3167921459 hasConceptScore W3167921459C33923547 @default.
- W3167921459 hasConceptScore W3167921459C36503486 @default.
- W3167921459 hasConceptScore W3167921459C41008148 @default.
- W3167921459 hasConceptScore W3167921459C43214815 @default.
- W3167921459 hasConceptScore W3167921459C48044578 @default.
- W3167921459 hasConceptScore W3167921459C48103436 @default.
- W3167921459 hasConceptScore W3167921459C50644808 @default.
- W3167921459 hasConceptScore W3167921459C62520636 @default.
- W3167921459 hasConceptScore W3167921459C77088390 @default.
- W3167921459 hasLocation W31679214591 @default.
- W3167921459 hasOpenAccess W3167921459 @default.
- W3167921459 hasPrimaryLocation W31679214591 @default.
- W3167921459 hasRelatedWork W10059424 @default.