Matches in SemOpenAlex for { <https://semopenalex.org/work/W3167921710> ?p ?o ?g. }
- W3167921710 endingPage "13" @default.
- W3167921710 startingPage "1" @default.
- W3167921710 abstract "Lithology interpretation is important for understanding subsurface properties. Yet, the common manual well log interpretation is usually with low efficiency and bad consistency. Therefore, the automatic well log interpretation tools based on machine learning and deep learning have been developed. Although the state-of-the-art sophisticated models can show fine interpretation performance with acceptable accuracies, “blind” tests do not always exhibit satisfactory results because of the complexity of lithology interpretation with respect to subsurface rock properties and the data-labeling quality. To solve this generalization challenge, we propose to leverage the parameterized quantum circuits in the deep-learning model. The quantum computing takes advantages of the superposition and entanglement quantum systems, which could potentially endow the generalization power or capability to the deep-learning model. Using the proposed quantum-enhanced deep-learning (QEDL) model, we have tested the model performance on field well log data from different wells. Compared with the classic fine convolutional neural network (CNN) model and the long short-term memory (LSTM) model, the proposed QEDL model achieves comparable model performance with a clearly improved generalization power for interpreting both thin and thick lithology layers. In addition, because of the quantum circuit structure, the QEDL model needs much fewer model parameters than LSTM and CNN models, i.e., the QEDL parameter number in our study can be approximately 75% less than that of LSTM and 89% less than that of CNN." @default.
- W3167921710 created "2021-06-22" @default.
- W3167921710 creator A5000850153 @default.
- W3167921710 creator A5010660404 @default.
- W3167921710 creator A5013761794 @default.
- W3167921710 creator A5024397951 @default.
- W3167921710 creator A5075938156 @default.
- W3167921710 creator A5077552109 @default.
- W3167921710 date "2022-01-01" @default.
- W3167921710 modified "2023-10-18" @default.
- W3167921710 title "Quantum-Enhanced Deep Learning-Based Lithology Interpretation From Well Logs" @default.
- W3167921710 cites W1485981043 @default.
- W3167921710 cites W1569966285 @default.
- W3167921710 cites W1571126251 @default.
- W3167921710 cites W195150910 @default.
- W3167921710 cites W1964940342 @default.
- W3167921710 cites W1982778884 @default.
- W3167921710 cites W1990514347 @default.
- W3167921710 cites W1997837296 @default.
- W3167921710 cites W2042031583 @default.
- W3167921710 cites W2064675550 @default.
- W3167921710 cites W2072239066 @default.
- W3167921710 cites W2074120853 @default.
- W3167921710 cites W2076063813 @default.
- W3167921710 cites W2080189009 @default.
- W3167921710 cites W2084274514 @default.
- W3167921710 cites W2107878631 @default.
- W3167921710 cites W2122585011 @default.
- W3167921710 cites W2143612262 @default.
- W3167921710 cites W2179731956 @default.
- W3167921710 cites W2320861612 @default.
- W3167921710 cites W2749959226 @default.
- W3167921710 cites W2766259095 @default.
- W3167921710 cites W2767292437 @default.
- W3167921710 cites W2781891981 @default.
- W3167921710 cites W2790388700 @default.
- W3167921710 cites W2799097568 @default.
- W3167921710 cites W2801242102 @default.
- W3167921710 cites W2886098498 @default.
- W3167921710 cites W2893747136 @default.
- W3167921710 cites W2901691125 @default.
- W3167921710 cites W2902867040 @default.
- W3167921710 cites W2908479291 @default.
- W3167921710 cites W2912913790 @default.
- W3167921710 cites W2919115771 @default.
- W3167921710 cites W2936504543 @default.
- W3167921710 cites W2944269055 @default.
- W3167921710 cites W2954863666 @default.
- W3167921710 cites W2963787510 @default.
- W3167921710 cites W2969839555 @default.
- W3167921710 cites W2974397275 @default.
- W3167921710 cites W2982350982 @default.
- W3167921710 cites W2998797416 @default.
- W3167921710 cites W2999437754 @default.
- W3167921710 cites W2999581854 @default.
- W3167921710 cites W3000927853 @default.
- W3167921710 cites W3004965358 @default.
- W3167921710 cites W3012353860 @default.
- W3167921710 cites W3014564255 @default.
- W3167921710 cites W3033247985 @default.
- W3167921710 cites W3034362861 @default.
- W3167921710 cites W3044088702 @default.
- W3167921710 cites W3045456820 @default.
- W3167921710 cites W3055578719 @default.
- W3167921710 cites W3105870134 @default.
- W3167921710 cites W4239510810 @default.
- W3167921710 doi "https://doi.org/10.1109/tgrs.2021.3085340" @default.
- W3167921710 hasPublicationYear "2022" @default.
- W3167921710 type Work @default.
- W3167921710 sameAs 3167921710 @default.
- W3167921710 citedByCount "11" @default.
- W3167921710 countsByYear W31679217102021 @default.
- W3167921710 countsByYear W31679217102022 @default.
- W3167921710 countsByYear W31679217102023 @default.
- W3167921710 crossrefType "journal-article" @default.
- W3167921710 hasAuthorship W3167921710A5000850153 @default.
- W3167921710 hasAuthorship W3167921710A5010660404 @default.
- W3167921710 hasAuthorship W3167921710A5013761794 @default.
- W3167921710 hasAuthorship W3167921710A5024397951 @default.
- W3167921710 hasAuthorship W3167921710A5075938156 @default.
- W3167921710 hasAuthorship W3167921710A5077552109 @default.
- W3167921710 hasConcept C108583219 @default.
- W3167921710 hasConcept C11413529 @default.
- W3167921710 hasConcept C119857082 @default.
- W3167921710 hasConcept C134306372 @default.
- W3167921710 hasConcept C153083717 @default.
- W3167921710 hasConcept C154945302 @default.
- W3167921710 hasConcept C177148314 @default.
- W3167921710 hasConcept C27753989 @default.
- W3167921710 hasConcept C33923547 @default.
- W3167921710 hasConcept C41008148 @default.
- W3167921710 hasConcept C81363708 @default.
- W3167921710 hasConceptScore W3167921710C108583219 @default.
- W3167921710 hasConceptScore W3167921710C11413529 @default.
- W3167921710 hasConceptScore W3167921710C119857082 @default.
- W3167921710 hasConceptScore W3167921710C134306372 @default.
- W3167921710 hasConceptScore W3167921710C153083717 @default.
- W3167921710 hasConceptScore W3167921710C154945302 @default.