Matches in SemOpenAlex for { <https://semopenalex.org/work/W3167971429> ?p ?o ?g. }
- W3167971429 endingPage "126335" @default.
- W3167971429 startingPage "126335" @default.
- W3167971429 abstract "The crop growth model (CGM) widely contributes to studying the impacts of regional climate change on crop growth status and yield. However, it requires high-quality daily weather data for the model establishment and verification, and the low data availability limits the application of CGM at the regional scale. With the rapid development of machine learning techniques, adapting data-driven machine learning algorithms to build a meta-model with environmental feature variables at the desired spatio-temporal scale provides a new method for regional yield simulation. In this study, we developed four machine-learning-based meta-models to simulate regional yield potential (RYP) of wheat in China with the selected environmental feature variables and assessed four different machine learning algorithms, including multiple linear regression (MLR), artificial neural networks (ANN), random forest (RF) and support vector regression (SVR). The research aimed to verify whether these meta-models can outperform CGM in simulating RYP. The results showed that the meta-models could reduce the requirements of the number of input variables and the amount of data for RYP simulation and maintain the simulation accuracy because monthly weather variables could replace daily weather variables in the meta-models. Although all four meta-models can well reveal the mean RYP, the meta-model based on RF has the best performance. In the RF-based meta-model, longitude, latitude, altitude, and the averaged maximum temperature in March are the top four ranked essential variables. However, the generalizability of meta-models is affected by the training dataset, and the meta-models cannot adapt appropriately to new unseen data. Moreover, there is no unique optimal machine learning algorithm used for building meta-models, and this will increase the workload of similar research in the future." @default.
- W3167971429 created "2021-06-22" @default.
- W3167971429 creator A5001098322 @default.
- W3167971429 creator A5001892611 @default.
- W3167971429 creator A5015566428 @default.
- W3167971429 creator A5017022122 @default.
- W3167971429 creator A5017945433 @default.
- W3167971429 creator A5036120347 @default.
- W3167971429 creator A5043370996 @default.
- W3167971429 creator A5065229969 @default.
- W3167971429 date "2021-09-01" @default.
- W3167971429 modified "2023-10-12" @default.
- W3167971429 title "Machine learning approaches can reduce environmental data requirements for regional yield potential simulation" @default.
- W3167971429 cites W1494192115 @default.
- W3167971429 cites W1524170368 @default.
- W3167971429 cites W1857364208 @default.
- W3167971429 cites W1977177161 @default.
- W3167971429 cites W1984670478 @default.
- W3167971429 cites W1984983294 @default.
- W3167971429 cites W1985600431 @default.
- W3167971429 cites W1986964041 @default.
- W3167971429 cites W1994973732 @default.
- W3167971429 cites W1997902957 @default.
- W3167971429 cites W2007782692 @default.
- W3167971429 cites W2017496690 @default.
- W3167971429 cites W2033275656 @default.
- W3167971429 cites W2046612965 @default.
- W3167971429 cites W2047268881 @default.
- W3167971429 cites W2053683629 @default.
- W3167971429 cites W2070337192 @default.
- W3167971429 cites W2083553000 @default.
- W3167971429 cites W2101927907 @default.
- W3167971429 cites W2117162642 @default.
- W3167971429 cites W2120492892 @default.
- W3167971429 cites W2134281019 @default.
- W3167971429 cites W2135752545 @default.
- W3167971429 cites W2138632244 @default.
- W3167971429 cites W2144386303 @default.
- W3167971429 cites W2161994757 @default.
- W3167971429 cites W2165698076 @default.
- W3167971429 cites W2299040367 @default.
- W3167971429 cites W2337031030 @default.
- W3167971429 cites W2346168539 @default.
- W3167971429 cites W2416782259 @default.
- W3167971429 cites W2521677216 @default.
- W3167971429 cites W2601377465 @default.
- W3167971429 cites W2754045938 @default.
- W3167971429 cites W2793811319 @default.
- W3167971429 cites W2803905273 @default.
- W3167971429 cites W2890400233 @default.
- W3167971429 cites W2895348292 @default.
- W3167971429 cites W2899289605 @default.
- W3167971429 cites W2911964244 @default.
- W3167971429 cites W2946844666 @default.
- W3167971429 cites W3023784841 @default.
- W3167971429 cites W3046407217 @default.
- W3167971429 doi "https://doi.org/10.1016/j.eja.2021.126335" @default.
- W3167971429 hasPublicationYear "2021" @default.
- W3167971429 type Work @default.
- W3167971429 sameAs 3167971429 @default.
- W3167971429 citedByCount "11" @default.
- W3167971429 countsByYear W31679714292022 @default.
- W3167971429 countsByYear W31679714292023 @default.
- W3167971429 crossrefType "journal-article" @default.
- W3167971429 hasAuthorship W3167971429A5001098322 @default.
- W3167971429 hasAuthorship W3167971429A5001892611 @default.
- W3167971429 hasAuthorship W3167971429A5015566428 @default.
- W3167971429 hasAuthorship W3167971429A5017022122 @default.
- W3167971429 hasAuthorship W3167971429A5017945433 @default.
- W3167971429 hasAuthorship W3167971429A5036120347 @default.
- W3167971429 hasAuthorship W3167971429A5043370996 @default.
- W3167971429 hasAuthorship W3167971429A5065229969 @default.
- W3167971429 hasConcept C105795698 @default.
- W3167971429 hasConcept C119857082 @default.
- W3167971429 hasConcept C121332964 @default.
- W3167971429 hasConcept C12267149 @default.
- W3167971429 hasConcept C148483581 @default.
- W3167971429 hasConcept C154945302 @default.
- W3167971429 hasConcept C169258074 @default.
- W3167971429 hasConcept C27158222 @default.
- W3167971429 hasConcept C2778755073 @default.
- W3167971429 hasConcept C33923547 @default.
- W3167971429 hasConcept C41008148 @default.
- W3167971429 hasConcept C45804977 @default.
- W3167971429 hasConcept C50644808 @default.
- W3167971429 hasConcept C62520636 @default.
- W3167971429 hasConceptScore W3167971429C105795698 @default.
- W3167971429 hasConceptScore W3167971429C119857082 @default.
- W3167971429 hasConceptScore W3167971429C121332964 @default.
- W3167971429 hasConceptScore W3167971429C12267149 @default.
- W3167971429 hasConceptScore W3167971429C148483581 @default.
- W3167971429 hasConceptScore W3167971429C154945302 @default.
- W3167971429 hasConceptScore W3167971429C169258074 @default.
- W3167971429 hasConceptScore W3167971429C27158222 @default.
- W3167971429 hasConceptScore W3167971429C2778755073 @default.
- W3167971429 hasConceptScore W3167971429C33923547 @default.
- W3167971429 hasConceptScore W3167971429C41008148 @default.
- W3167971429 hasConceptScore W3167971429C45804977 @default.