Matches in SemOpenAlex for { <https://semopenalex.org/work/W3167996502> ?p ?o ?g. }
- W3167996502 endingPage "11" @default.
- W3167996502 startingPage "1" @default.
- W3167996502 abstract "The data-driven methods in machinery fault diagnosis have become increasingly popular in the past two decades. However, the wide applications of this scheme are generally compromised in real-world conditions because of the discrepancy between the training data and testing data. Although the recently emerging transfer fault diagnosis can learn transferable features from relevant source data and adapt the diagnostic model to the target data, these methods still only work on the target domain with a priori data distribution. The generalization capability of the transferred model cannot be guaranteed for unseen domains. Since the working conditions of machinery are varying during operation, the generalization capability of the diagnosis methods is crucial in this case. To tackle this challenge, this article proposes a domain generalization-based hybrid diagnosis network for deploying to unseen working conditions. The main idea is to regularize the discriminant structure of the deep network with both intrinsic and extrinsic generalization objectives such that the diagnostic model can learn robust features and generalize to unseen domains. The triplet loss minimization of intrinsic multisource data is implemented to facilitate the intraclass compactness and the interclass separability at the class level, leading to a more generalized decision boundary. The extrinsic domain-level regularization is achieved by using adversarial training to further reduce the risk of overfitting. Extensive cross-domain diagnostic experiments on planetary gearbox demonstrate the effectiveness of the proposed method." @default.
- W3167996502 created "2021-06-22" @default.
- W3167996502 creator A5007290301 @default.
- W3167996502 creator A5015290689 @default.
- W3167996502 creator A5031762854 @default.
- W3167996502 date "2021-01-01" @default.
- W3167996502 modified "2023-10-13" @default.
- W3167996502 title "A Hybrid Generalization Network for Intelligent Fault Diagnosis of Rotating Machinery Under Unseen Working Conditions" @default.
- W3167996502 cites W1920962657 @default.
- W3167996502 cites W2115925415 @default.
- W3167996502 cites W2562762876 @default.
- W3167996502 cites W2584994008 @default.
- W3167996502 cites W2603304445 @default.
- W3167996502 cites W2621019941 @default.
- W3167996502 cites W2791694051 @default.
- W3167996502 cites W2793062918 @default.
- W3167996502 cites W2798149494 @default.
- W3167996502 cites W2886506350 @default.
- W3167996502 cites W2886924644 @default.
- W3167996502 cites W2887782657 @default.
- W3167996502 cites W2892709813 @default.
- W3167996502 cites W2893747136 @default.
- W3167996502 cites W2896784509 @default.
- W3167996502 cites W2903917280 @default.
- W3167996502 cites W2914298094 @default.
- W3167996502 cites W2916064970 @default.
- W3167996502 cites W2939535241 @default.
- W3167996502 cites W2942245950 @default.
- W3167996502 cites W2957568672 @default.
- W3167996502 cites W2963664762 @default.
- W3167996502 cites W2981982720 @default.
- W3167996502 cites W2991521245 @default.
- W3167996502 cites W2998506103 @default.
- W3167996502 cites W3009370740 @default.
- W3167996502 cites W3020886907 @default.
- W3167996502 cites W3021496598 @default.
- W3167996502 cites W3024781379 @default.
- W3167996502 cites W3025888249 @default.
- W3167996502 cites W3031466690 @default.
- W3167996502 cites W3033043953 @default.
- W3167996502 cites W3048342131 @default.
- W3167996502 cites W3060850527 @default.
- W3167996502 cites W3097694075 @default.
- W3167996502 cites W3099206234 @default.
- W3167996502 cites W3106901053 @default.
- W3167996502 cites W3113371083 @default.
- W3167996502 cites W3128871194 @default.
- W3167996502 cites W3164102896 @default.
- W3167996502 cites W3212853132 @default.
- W3167996502 cites W3214396588 @default.
- W3167996502 doi "https://doi.org/10.1109/tim.2021.3088489" @default.
- W3167996502 hasPublicationYear "2021" @default.
- W3167996502 type Work @default.
- W3167996502 sameAs 3167996502 @default.
- W3167996502 citedByCount "63" @default.
- W3167996502 countsByYear W31679965022021 @default.
- W3167996502 countsByYear W31679965022022 @default.
- W3167996502 countsByYear W31679965022023 @default.
- W3167996502 crossrefType "journal-article" @default.
- W3167996502 hasAuthorship W3167996502A5007290301 @default.
- W3167996502 hasAuthorship W3167996502A5015290689 @default.
- W3167996502 hasAuthorship W3167996502A5031762854 @default.
- W3167996502 hasConcept C111472728 @default.
- W3167996502 hasConcept C119857082 @default.
- W3167996502 hasConcept C127313418 @default.
- W3167996502 hasConcept C134306372 @default.
- W3167996502 hasConcept C138885662 @default.
- W3167996502 hasConcept C154945302 @default.
- W3167996502 hasConcept C165205528 @default.
- W3167996502 hasConcept C175551986 @default.
- W3167996502 hasConcept C177148314 @default.
- W3167996502 hasConcept C22019652 @default.
- W3167996502 hasConcept C2776135515 @default.
- W3167996502 hasConcept C33923547 @default.
- W3167996502 hasConcept C41008148 @default.
- W3167996502 hasConcept C50644808 @default.
- W3167996502 hasConcept C75553542 @default.
- W3167996502 hasConceptScore W3167996502C111472728 @default.
- W3167996502 hasConceptScore W3167996502C119857082 @default.
- W3167996502 hasConceptScore W3167996502C127313418 @default.
- W3167996502 hasConceptScore W3167996502C134306372 @default.
- W3167996502 hasConceptScore W3167996502C138885662 @default.
- W3167996502 hasConceptScore W3167996502C154945302 @default.
- W3167996502 hasConceptScore W3167996502C165205528 @default.
- W3167996502 hasConceptScore W3167996502C175551986 @default.
- W3167996502 hasConceptScore W3167996502C177148314 @default.
- W3167996502 hasConceptScore W3167996502C22019652 @default.
- W3167996502 hasConceptScore W3167996502C2776135515 @default.
- W3167996502 hasConceptScore W3167996502C33923547 @default.
- W3167996502 hasConceptScore W3167996502C41008148 @default.
- W3167996502 hasConceptScore W3167996502C50644808 @default.
- W3167996502 hasConceptScore W3167996502C75553542 @default.
- W3167996502 hasFunder F4320321001 @default.
- W3167996502 hasFunder F4320321543 @default.
- W3167996502 hasFunder F4320335777 @default.
- W3167996502 hasLocation W31679965021 @default.
- W3167996502 hasOpenAccess W3167996502 @default.
- W3167996502 hasPrimaryLocation W31679965021 @default.