Matches in SemOpenAlex for { <https://semopenalex.org/work/W3167998412> ?p ?o ?g. }
- W3167998412 endingPage "102744" @default.
- W3167998412 startingPage "102744" @default.
- W3167998412 abstract "•The Middle Jurassic “Liaoxitriton” daohugouensis is not congenic with Liaoxitriton zhongjiani•Neimengtriton daohugouensis comb. nov. is a semiaquatic stem hynobiid salamander•Sequential morphological evolutionary patterns were revealed for Cryptobranchoidea•Variations in caudosacral numbers are associated with fertilization mode evolution The Hynobiidae are an early-diverging clade of crown-group salamanders (urodeles) with an important bearing on the evolution of urodeles. Paleobiology and early-branching patterns of the Hynobiidae remain unclear owing to a poorly documented fossil record. We reported a newly referred specimen to the stem hynobiid, originally named as “Liaoxitriton daohugouensis,” but here as Neimengtriton daohugouensis comb. nov., and predates the previously estimated origination time of Hynobiidae for at least 8 Myr. We interpret N. daohugouensis as semiaquatic at the adult stage, a previously unknown paleoecological preference among Mesozoic salamanders. Phenotypic variations of N. daohugouensis enlighten an unrecognized association between caudosacral vertebrae and fertilization modes in the early evolution of urodeles. Our cladistic analyses based on morphological characters not only recognize several stem hynobiids and establish Panhynobia nomen cladinovum for the total-group hynobiids but also shed light on the sequential evolution of morphological features in this primitive urodele clade. The Hynobiidae are an early-diverging clade of crown-group salamanders (urodeles) with an important bearing on the evolution of urodeles. Paleobiology and early-branching patterns of the Hynobiidae remain unclear owing to a poorly documented fossil record. We reported a newly referred specimen to the stem hynobiid, originally named as “Liaoxitriton daohugouensis,” but here as Neimengtriton daohugouensis comb. nov., and predates the previously estimated origination time of Hynobiidae for at least 8 Myr. We interpret N. daohugouensis as semiaquatic at the adult stage, a previously unknown paleoecological preference among Mesozoic salamanders. Phenotypic variations of N. daohugouensis enlighten an unrecognized association between caudosacral vertebrae and fertilization modes in the early evolution of urodeles. Our cladistic analyses based on morphological characters not only recognize several stem hynobiids and establish Panhynobia nomen cladinovum for the total-group hynobiids but also shed light on the sequential evolution of morphological features in this primitive urodele clade. Hynobiidae, commonly known as Asiatic salamanders, encompass 83 or 85 extant species in nine or ten genera (validity of Protohynobius as pending) that live primarily in Asia, with a single species (Salamandrella keyserlingii) extending into the European part of Russia (e.g., Duellman and Trueb, 1986Duellman W.E. Trueb L. Biology of Amphibians. McGraw Hill Book Company, 1986Google Scholar; Blackburn and Wake, 2011Blackburn D.C. Wake D.B. Class Amphibia gray, 1825.in: Animal Biodiversity: An Outline of Higher-Level Classification and Survey of Taxonomic Richness. 3148. Zootaxa, 2011: 39-55https://doi.org/10.11646/zootaxa.3148.1.8Crossref Google Scholar; Vitt and Caldwell, 2014Vitt L.J. Caldwell J.P. Herpetology: An Introductory Biology of Amphibians and Reptiles.Fourth Edition. Academic Press, 2014Google Scholar; Fei and Ye, 2016Fei L. Ye C. Amphibians of China. Volume 1. Science Press, 2016Google Scholar; AmphibiaWeb, 2021AmphibiaWeb Information on Amphibian Biology and Conservation. The University of California, 2021http://amphibiaweb.orgDate accessed: January 20, 2021Google Scholar; Frost, 2021Frost D.R. Amphibian Species of the World: An Online Reference. American Museum of Natural History, 2021http://research.amnh.org/herpetology/amphibia/index.htmlGoogle Scholar). Extant hynobiids are small to medium sized (70–270 mm in total length) and typically undergo metamorphosis, the life history process during which all larval structures (e.g., external gills) are lost by resorption to transform larvae into adults (e.g., Dunn, 1923Dunn E.R. The salamanders of the family Hynobiidae.Proc. Natl. Acad. Sci. U S A. 1923; 58: 445-523https://doi.org/10.2307/20026019Crossref Google Scholar; Noble, 1931Noble G.K. The Biology of the Amphibia. Dover Publications, 1931Crossref Google Scholar; Duellman and Trueb, 1986Duellman W.E. Trueb L. Biology of Amphibians. McGraw Hill Book Company, 1986Google Scholar; Larson et al., 2003Larson A. Weisrock D.W. Kozak K.H. Phylogenetic systematics of salamanders (Amphibia: Urodela), a review.in: Sever D.M. Reproductive Biology and Phylogeny of Urodela (Amphibia). Science Publishers, 2003: 31-108Google Scholar; Fei and Ye, 2016Fei L. Ye C. Amphibians of China. Volume 1. Science Press, 2016Google Scholar; but see Jiang et al., 2018Jiang J. Jia J. Zhang M. Gao K.-Q. Osteology of Batrachuperus londongensis (Urodela, Hynobiidae): study of bony anatomy of a facultatively neotenic salamander from mount emei, sichuan province, China.PeerJ. 2018; 6: e4517https://doi.org/10.7717/peerj.4517Crossref PubMed Scopus (12) Google Scholar). Postmetamorphosed hynobiids can be terrestrial, aquatic, or semiaquatic, and all have external fertilization breeding by spawning in water (e.g., Regal, 1966Regal P.J. Feeding specializations and the classification of terrestrial salamanders.Evolution. 1966; 20: 392-407https://doi.org/10.1111/j.1558-5646.1966.tb03374.xCrossref PubMed Google Scholar; Kuzmin and Thiesmeier, 2001Kuzmin S.L. Thiesmeier B. Mountain Salamanders of the Genus Ranodon. Pensoft Publishers, 2001Google Scholar; Poyarkov et al., 2012Poyarkov Jr., N.A. Che J. Min M.-S. Kuro-o M. Yan F. Li C. Iizuka K. Vieites D. Review of the systematics, morphology and distribution of Asian Clawed Salamanders, genus Onychodactylus (Amphibia, Caudata: Hynobiidae), with the description of four new species.Zootaxa. 2012; 3465: 1-106https://doi.org/10.11646/zootaxa.3465.1.1Crossref Google Scholar; Fei and Ye, 2016Fei L. Ye C. Amphibians of China. Volume 1. Science Press, 2016Google Scholar; see Discussion). Phylogenetically, the Hynobiidae are united with Cryptobranchidae as sister groups within the suborder Cryptobranchoidea (e.g., Estes, 1981Estes R. Encyclopedia of Paleoherpetology. Part 2, Gymnophiona, Caudata. Gustav Fischer Verlag, 1981Google Scholar; Duellman and Trueb, 1986Duellman W.E. Trueb L. Biology of Amphibians. McGraw Hill Book Company, 1986Google Scholar; Larson et al., 2003Larson A. Weisrock D.W. Kozak K.H. Phylogenetic systematics of salamanders (Amphibia: Urodela), a review.in: Sever D.M. Reproductive Biology and Phylogeny of Urodela (Amphibia). Science Publishers, 2003: 31-108Google Scholar; Zhang et al., 2006Zhang P. Chen Y.-Q. Zhou H. Liu Y.-F. Wang X.-L. Papenfuss T.J. Wake D.B. Qu L.-H. Phylogeny, evolution, and biogeography of Asiatic salamanders (Hynobiidae).Proc. Natl. Acad. Sci. U S A. 2006; 103: 7360-7365https://doi.org/10.1073/pnas.0602325103Crossref PubMed Scopus (131) Google Scholar; Zhang and Wake, 2009Zhang P. Wake D.B. Higher-level salamander relationships and divergence dates inferred from complete mitochondrial genomes.Mol. Phylogenet. Evol. 2009; 2009: 492-508https://doi.org/10.1016/j.ympev.2009.07.010Crossref Scopus (130) Google Scholar; Pyron and Wiens, 2011Pyron R.A. Wiens J.J. A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians.Mol. Phylogenet. Evol. 2011; 61: 543-583https://doi.org/10.1016/j.ympev.2011.06.012Crossref PubMed Scopus (1069) Google Scholar; Weisrock et al., 2013Weisrock D.W. Macey J.R. Matsui M. Mulcahy D.G. Papenfuss T.J. Molecular phylogenetic reconstruction of the endemic Asian salamander family Hynobiidae (Amphibia, Caudata).Zootaxa. 2013; 3626: 77-93https://doi.org/10.11646/zootaxa.3626.1.3Crossref PubMed Scopus (17) Google Scholar; Chen et al., 2015Chen M.Y. Mao R.L. Liang D. Kuro-o M. Zeng X.M. Zhang P. A reinvestigation of phylogeny and divergence times of Hynobiidae (Amphibia, Caudata) based on 29 nuclear genes.Mol. Phylogenet. Evol. 2015; 83: 1-6https://doi.org/10.1016/j.ympev.2014.10.010Crossref PubMed Scopus (20) Google Scholar), which has long been regarded as a primitive clade among the crown salamanders, or Urodela (Dunn, 1922Dunn E.R. The sound-transmitting apparatus of salamanders and the phylogeny of the Caudata.Am. Nat. 1922; 56: 418-427https://doi.org/10.1086/279882Crossref Google Scholar), because cryptobranchoids retained several plesiomorphic features of urodeles, including the retention of an angular bone in the mandible and breeding by external fertilization (e.g., Estes, 1981Estes R. Encyclopedia of Paleoherpetology. Part 2, Gymnophiona, Caudata. Gustav Fischer Verlag, 1981Google Scholar; Duellman and Trueb, 1986Duellman W.E. Trueb L. Biology of Amphibians. McGraw Hill Book Company, 1986Google Scholar; Jia and Gao, 2016aJia J. Gao K.-Q. A new hynobiid-like salamander (Amphibia, Urodela) from Inner Mongolia, China, provides a rare case study of developmental features in an Early Cretaceous fossil urodele.PeerJ. 2016; 4: e2499https://doi.org/10.7717/peerj.2499Crossref PubMed Scopus (14) Google Scholar; Jia and Gao, 2019Jia J. Gao K.-Q. A new stem hynobiid salamander (Urodela, Cryptobranchoidea) from the upper jurassic (oxfordian) of liaoning province, China.J. Vertebr. Paleontol. 2019; 39: 1-22https://doi.org/10.1080/02724634.2019.1588285Crossref Scopus (6) Google Scholar). Interestingly, some if not all hynobiids have several atavistic features (e.g., two centralia in wrist/ankle) either as standard patterns or intraspecific variations that are lost in derived urodeles but are present in the hypothesized temnospondyl ancestors of modern amphibians (e.g., Schmalhausen, 1968Schmalhausen I.I. The Origin of Terrestrial Vertebrates. Academic Press, 1968Google Scholar; Shubin and Wake, 2003Shubin N.H. Wake D.B. Morphological variation, development, and evolution of the limb skeleton of salamanders.in: Heatwole H. Davies M. Amphibia Biology, Volume 5: Osteology. Surrey Beatty and Sons, 2003: 1782-1808Google Scholar; Boisvert, 2009Boisvert C.A. Vertebral development of modern sala manders provides insights into a unique event of their evolutionary history.J. Exp. Zool. B. 2009; 312B: 1-29https://doi.org/10.1002/jez.b.21238Crossref Scopus (17) Google Scholar; Jiang et al., 2018Jiang J. Jia J. Zhang M. Gao K.-Q. Osteology of Batrachuperus londongensis (Urodela, Hynobiidae): study of bony anatomy of a facultatively neotenic salamander from mount emei, sichuan province, China.PeerJ. 2018; 6: e4517https://doi.org/10.7717/peerj.4517Crossref PubMed Scopus (12) Google Scholar; Jia et al., 2019Jia J. Jiang J. Zhang M. Gao K.-Q. Osteology of Batrachuperus yenyuanensis (Urodela, Hynobiidae), a high-altitude mountain stream salamander from western China.PLoS One. 2019; 14: e0211069https://doi.org/10.1371/journal.pone.0211069Crossref PubMed Scopus (9) Google Scholar). The evolutionary history of the Hynobiidae is poorly known because fossil records of this family are one of the least well documented among urodele clades (Estes, 1981Estes R. Encyclopedia of Paleoherpetology. Part 2, Gymnophiona, Caudata. Gustav Fischer Verlag, 1981Google Scholar; Gao and Shubin, 2012Gao K.-Q. Shubin N.H. Late jurassic salamandroid from western liaoning, China.Proc. Natl. Acad. Sci. U S A. 2012; 109: 5767-5772https://doi.org/10.1073/pnas.1009828109Crossref PubMed Scopus (50) Google Scholar). Cenozoic fossils of hynobiids are known only by isolated bones from the Miocene through Holocene in Asia and Eastern Europe that are either affiliated with two extant genera, Salamandrella and Ranodon (e.g., Averianov and Tjutkova, 1995Averianov A.O. Tjutkova L.A. Ranodon cf. sibiricus (Amphibia, Caudata) from the Upper Pliocene of southern Kazakhstan: the first fossil record of the family Hynobiidae.Palaontol. Z. 1995; 69: 257-264https://doi.org/10.1007/BF02985989Crossref Scopus (11) Google Scholar; Ratnikov, 2010Ratnikov V.Y. A review of tailed amphibian remains from late Cenozoic sediments of the East European plain.Russ. J. Herpetol. 2010; 17: 59-66https://doi.org/10.30906/1026-2296-2010-17-1-59-66Crossref Google Scholar; Vasilyan et al., 2013Vasilyan D. Böhme M. Chkhikvadze V.M. Semenov Y.A. Joyce W.G. A new giant salamander (Urodela, pancryptobrancha) from the Miocene of eastern Europe (grytsiv, Ukraine).J. Vertebr. Paleontol. 2013; 33: 301-318https://doi.org/10.1080/02724634.2013.722151Crossref Scopus (24) Google Scholar; Syromyatnikova, 2014Syromyatnikova E.V. The first record of Salamandrella (Caudata: Hynobiidae) from the Neogene of Russia.Russ. J. Herpetol. 2014; 21: 217-220https://doi.org/10.30906/1026-2296-2014-21-3-217-220Crossref Google Scholar), and the extinct genus Parahynobius (Venczel, 1999aVenczel M. Fossil land salamanders (Caudata, Hynobiidae) from the Carpathian basin: relation between extinct and extant genera.Acta Palaeontol. Rom. 1999; 2: 489-492Google Scholar; Venczel, 1999bVenczel M. Land salamanders of the family Hynobiidae from the neogene and quaternary of Europe.Amphib. Reptil. 1999; 20: 401-412https://doi.org/10.1163/156853899X00448Crossref Google Scholar; Venczel and Hír, 2013Venczel M. Hír J. Amphibians and squamates from the Miocene of felsötárkány basin, N-Hungary.Palaeontogr. Abt. A. 2013; 300: 117-147https://doi.org/10.1127/pala/300/2013/117Crossref Scopus (32) Google Scholar; but see Jia and Gao, 2016aJia J. Gao K.-Q. A new hynobiid-like salamander (Amphibia, Urodela) from Inner Mongolia, China, provides a rare case study of developmental features in an Early Cretaceous fossil urodele.PeerJ. 2016; 4: e2499https://doi.org/10.7717/peerj.2499Crossref PubMed Scopus (14) Google Scholar), or were referred to as Hynobiidae indet (e.g., Ratnikov, 2010Ratnikov V.Y. A review of tailed amphibian remains from late Cenozoic sediments of the East European plain.Russ. J. Herpetol. 2010; 17: 59-66https://doi.org/10.30906/1026-2296-2010-17-1-59-66Crossref Google Scholar; Vasilyan et al., 2017Vasilyan D. Zazhigin V.S. Böhme M. Neogene amphibians and reptiles (Caudata, Anura, gekkota, lacertilia, and Testudines) from the south of western siberia, Russia, and northeastern Kazakhstan.PeerJ. 2017; 5: e3025https://doi.org/10.7717/peerj.3025Crossref PubMed Scopus (11) Google Scholar). In the Mesozoic, the genera Iridotriton (Tithonian) from the USA and Kiyatriton (Aptian-Albian and Bathonian) from Siberian Russia are known by a disarticulated skeleton and isolated bones, respectively (Evans et al., 2005Evans S.E. Lally C. Chure D.C. Elder A. Maisano J.A. A late jurassic salamander (Amphibia: Caudata) from the morrison formation of north America.Zool. J. Linn. Soc. 2005; 143: 599-616https://doi.org/10.1111/j.1096-3642.2005.00159.xCrossref Scopus (39) Google Scholar; Skutschas, 2014Skutschas P.P. Kiyatriton leshchinskiyi Averianov et Voronkevich, 2001, a crown-group salamander from the Lower Cretaceous of Western Siberia, Russia.Cretac. Res. 2014; 51: 88-94https://doi.org/10.1016/j.cretres.2014.05.014Crossref Scopus (10) Google Scholar, Skutschas, 2016Skutschas P.P. A new crown-group salamander from the middle jurassic of western siberia, Russia.Palaeobio. Palaeoenv. 2016; 96: 41-48https://doi.org/10.1007/s12549-015-0216-xCrossref Scopus (10) Google Scholar). Although more or less hynobiid-like (e.g., Gao and Shubin, 2012Gao K.-Q. Shubin N.H. Late jurassic salamandroid from western liaoning, China.Proc. Natl. Acad. Sci. U S A. 2012; 109: 5767-5772https://doi.org/10.1073/pnas.1009828109Crossref PubMed Scopus (50) Google Scholar; Skutschas, 2014Skutschas P.P. Kiyatriton leshchinskiyi Averianov et Voronkevich, 2001, a crown-group salamander from the Lower Cretaceous of Western Siberia, Russia.Cretac. Res. 2014; 51: 88-94https://doi.org/10.1016/j.cretres.2014.05.014Crossref Scopus (10) Google Scholar), both of them are at best to be treated as members of the Cryptobranchoidea (Skutschas, 2016Skutschas P.P. A new crown-group salamander from the middle jurassic of western siberia, Russia.Palaeobio. Palaeoenv. 2016; 96: 41-48https://doi.org/10.1007/s12549-015-0216-xCrossref Scopus (10) Google Scholar; Jia and Gao, 2016bJia J. Gao K.-Q. A new basal salamandroid (Amphibia, Urodela) from the late jurassic of qinglong, Hebei province, China.PLoS One. 2016; 11: e0153834https://doi.org/10.1371/journal.pone.0153834Crossref PubMed Scopus (22) Google Scholar, Jia and Gao, 2019Jia J. Gao K.-Q. A new stem hynobiid salamander (Urodela, Cryptobranchoidea) from the upper jurassic (oxfordian) of liaoning province, China.J. Vertebr. Paleontol. 2019; 39: 1-22https://doi.org/10.1080/02724634.2019.1588285Crossref Scopus (6) Google Scholar; Rong, 2018Rong Y.F. Restudy of Regalerpeton weichangensis (Amphibia: Urodela) from the lower cretaceous of Hebei, China. Vert.PalAs. 2018; 56: 121-136https://doi.org/10.19615/j.cnki.1000-3118.170627Crossref Google Scholar). The most promising stem hynobiids are eight species in seven genera that belong to the Early Cretaceous Jehol Biota (Laccotriton, Liaoxitriton, Nuominerpeton, Regalerpeton, and Sinerpeton) and the Middle–Late Jurassic Yanliao Biota (Liaoxitriton, Linglongtriton, and Pangerpeton; Jia and Gao, 2019Jia J. Gao K.-Q. A new stem hynobiid salamander (Urodela, Cryptobranchoidea) from the upper jurassic (oxfordian) of liaoning province, China.J. Vertebr. Paleontol. 2019; 39: 1-22https://doi.org/10.1080/02724634.2019.1588285Crossref Scopus (6) Google Scholar). All these species are known from well-articulated specimens superbly preserved in lacustrine deposits in Inner Mongolia, Liaoning, and Hebei provinces, China (Gao et al., 2013Gao K.-Q. Chen J. Jia J. Taxonomic diversity, stratigraphic range, and exceptional preservation of Juro-Cretaceous salamanders from northern China.Can. J. Earth Sci. 2013; 50: 255-267https://doi.org/10.1139/e2012-039Crossref Scopus (25) Google Scholar; Jia and Gao, 2016aJia J. Gao K.-Q. A new hynobiid-like salamander (Amphibia, Urodela) from Inner Mongolia, China, provides a rare case study of developmental features in an Early Cretaceous fossil urodele.PeerJ. 2016; 4: e2499https://doi.org/10.7717/peerj.2499Crossref PubMed Scopus (14) Google Scholar, Jia and Gao, 2019Jia J. Gao K.-Q. A new stem hynobiid salamander (Urodela, Cryptobranchoidea) from the upper jurassic (oxfordian) of liaoning province, China.J. Vertebr. Paleontol. 2019; 39: 1-22https://doi.org/10.1080/02724634.2019.1588285Crossref Scopus (6) Google Scholar). Most of the Chinese Mesozoic salamander genera are monotypic except Liaoxitriton, which contains two nominal species, implying that the genus is the only vertebrate component occurred in both the Jehol and Yanliao biotas (Zhou and Wang, 2017Zhou Z.-H. Wang Y. Vertebrate assemblages of the jurassic Yanliao biota and the early cretaceous Jehol biota: comparisons and implications.Palaeoworld. 2017; 26: 241-252https://doi.org/10.1016/j.palwor.2017.01.002Crossref Scopus (26) Google Scholar). The type species Liaoxitriton zhongjiani Dong and Wang, 1998Dong Z. Wang Y. A new urodele (Liaoxitriton zhongjiani gen. et sp. nov.) from the Early Cretaceous of western Liaoning Province, China.Vert. Palas. 1998; 36: 159-172Google Scholar is known by more than 30 specimens from the Lower Cretaceous Yixian Formation in western Liaoning (see Gao et al., 2013Gao K.-Q. Chen J. Jia J. Taxonomic diversity, stratigraphic range, and exceptional preservation of Juro-Cretaceous salamanders from northern China.Can. J. Earth Sci. 2013; 50: 255-267https://doi.org/10.1139/e2012-039Crossref Scopus (25) Google Scholar), whereas the other nominal species “Liaoxitriton daohugouensis” is erected on three specimens from the Daohugou beds of Inner Mongolia (Wang, 2004aWang Y. A new Mesozoic caudate (Liaoxitriton daohugouensis sp. nov.) from Inner Mongolia.China. Sci. Bull. 2004; 49: 858-860https://doi.org/10.1007/BF02889761Crossref Google Scholar; Sullivan et al., 2014Sullivan C. Wang Y. Hone D.W.E. Wang Y. Xu X. Zhang F. The vertebrates of the jurassic Daohugou biota of northeastern China.J. Vertebr. Paleontol. 2014; 34: 243-280https://doi.org/10.1080/02724634.2013.787316Crossref Scopus (90) Google Scholar). Conversely, our study of a fourth specimen from the type locality showed that “L. daohugouensis” cannot be properly classified as congeneric with the type species, but instead, it ought to be assigned to a genus of its own on the basis of multiple autapomorphies. The fourth specimen has several cranial features as in typical terrestrial extant hynobiids, stoutly ossified bony skeleton and moderately well-developed dorsal tail fin, indicating that this species is semiaquatic in life, an ecological preference that characterizes some extant hynobiids but has not yet been identified in Mesozoic salamanders. Inspired by phenotypic variations between the fourth and the holotype specimens of “L. daohugouensis”, in urodeles and early amphibians, we recognize that both the number and variability of caudosacral vertebrae are evolutionarily reduced likely constrained by different fertilization modes. We also conducted morphology-based cladistic analyses for all hynobiids at the generic level. Our results show that the new taxon is a stem hynobiid and predate the estimated time for the origin of total-group hynobiids at least 8 Myr earlier than the hypothesized ∼157 Ma from molecular studies (Chen et al., 2015Chen M.Y. Mao R.L. Liang D. Kuro-o M. Zeng X.M. Zhang P. A reinvestigation of phylogeny and divergence times of Hynobiidae (Amphibia, Caudata) based on 29 nuclear genes.Mol. Phylogenet. Evol. 2015; 83: 1-6https://doi.org/10.1016/j.ympev.2014.10.010Crossref PubMed Scopus (20) Google Scholar) and allow us to establish a clade for both stem and crown hynobiids to trace the morphological evolutionary history of this early-branching salamander clade. Class: Amphibia Linnaeus, 1758Linnaeus C. Systema Naturae Per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, Cum Characteribus, Differentiis, Synonymis, Locis. Tomus I. Laurentii Salvii, 1758Google Scholar Order: Urodela Duméril, 1806Duméril A.M.C. Zoologie Analytique, ou Méthode Naturelle de Classification des Animaux, Rendue Plus Facile à L’aide de Tableaux Synoptiques (Allais).1806Google Scholar Suborder: Cryptobranchoidea Dunn, 1922Dunn E.R. The sound-transmitting apparatus of salamanders and the phylogeny of the Caudata.Am. Nat. 1922; 56: 418-427https://doi.org/10.1086/279882Crossref Google Scholar PANHYNOBIA, nomen cladinovum Registration number—415. Definition—The largest total clade containing Neimengtriton daohugouensis, comb. nov. (Middle Jurassic); Linglongtriton daxishanensis (Late Jurassic); and Liaoxitriton zhongjiani, Nuominerpeton aquilonaris, and Regalerpeton weichangensis (all Early Cretaceous) and Hynobius (extant), but not Andrias (extant) and Cryptobranchus (extant). This is a maximum-total-clade phylogenetic definition. Abbreviated as max total ∇ (Liaoxitriton & Linglongtriton & Neimengtriton & Nuominerpeton & Regalerpeton & Hynobius ∼ Andrias & Cryptobranchus) (see de Queiroz et al., 2020de Queiroz K. Cantino P.D. Gauthier J.A. Phylonyms: A Companion to the PhyloCode. CRC Press, 2020Crossref Google Scholar). Etymology—Pan, Gr. “all, total” indicating reference to a total clade + hynobia, means Hynobiidae. Reference phylogeny—The reference phylogeny is Figure 6 in this article. Composition—Batrachuperus, Hynobius, Liaoxitriton, Linglongtriton, Liua, Neimengtriton, Nuominerpeton, Onychodactylus, Pachyhynobius, Paradactylodon, Parahynobius, Protohynobius, Pseudohynobius, Ranodon, Regalerpeton, and Salamandrella. Diagnosis—The clade is characterized by possession of the following four apomorphies (numbers in parentheses denote character numbers and polarities in supplemental information) as inherited by Neimengtriton and Hynobius: optic foramen opens at the posterior border of orbitosphenoid (54-0); dorsal and ventral crests of humerus well developed (88-1); femoral trochanter forming a twig-like projection from the shaft (89-1); and mesopodium ossified (108-1). Comments—Our hypothesized content for clade Panhynobia is based on the findings of cladistic analyses in this study, which show that the above-listed Chinese Mesozoic taxa are placed along the stem leading to a monophyletic crown Hynobiidae. Pangerpeton was recovered as “the basal-most stem hynobiid” (Jia and Gao, 2019Jia J. Gao K.-Q. A new stem hynobiid salamander (Urodela, Cryptobranchoidea) from the upper jurassic (oxfordian) of liaoning province, China.J. Vertebr. Paleontol. 2019; 39: 1-22https://doi.org/10.1080/02724634.2019.1588285Crossref Scopus (6) Google Scholar: p. 13), whereas based on increased sampling of both characters and taxa in Cryptobranchoidea, Pangerpeton was instead recovered here as a basal taxon of the total group Cryptobranchoidea. Jia and Gao, 2019Jia J. Gao K.-Q. A new stem hynobiid salamander (Urodela, Cryptobranchoidea) from the upper jurassic (oxfordian) of liaoning province, China.J. Vertebr. Paleontol. 2019; 39: 1-22https://doi.org/10.1080/02724634.2019.1588285Crossref Scopus (6) Google Scholar analysis was consistent with some earlier studies (Zhang et al., 2009Zhang G. Wang Y. Jones M.E.H. Evans S.E. A new Early Cretaceous salamander (Regalerpeton weichangensis gen. et sp. nov.) from the Huajiying Formation of northeastern China.Cretac. Res. 2009; 30: 551-558https://doi.org/10.1016/j.cretres.2008.10.004Crossref Scopus (23) Google Scholar; Gao and Shubin, 2012Gao K.-Q. Shubin N.H. Late jurassic salamandroid from western liaoning, China.Proc. Natl. Acad. Sci. U S A. 2012; 109: 5767-5772https://doi.org/10.1073/pnas.1009828109Crossref PubMed Scopus (50) Google Scholar; Jia and Gao, 2016bJia J. Gao K.-Q. A new basal salamandroid (Amphibia, Urodela) from the late jurassic of qinglong, Hebei province, China.PLoS One. 2016; 11: e0153834https://doi.org/10.1371/journal.pone.0153834Crossref PubMed Scopus (22) Google Scholar; Rong, 2018Rong Y.F. Restudy of Regalerpeton weichangensis (Amphibia: Urodela) from the lower cretaceous of Hebei, China. Vert.PalAs. 2018; 56: 121-136https://doi.org/10.19615/j.cnki.1000-3118.170627Crossref Google Scholar) in finding Iridotriton is related to hynobiids or some combination of stem hynobiids, yet because Iridotriton is so poorly known it remains frustratingly unclear whether the genus lies within or outside of clade Panhynobia. For that reason, we conservatively exclude Iridotriton from Panhynobia. For the same reason as Iridotriton, we also exclude Kiyatriton from Siberian Russia (Skutschas, 2014Skutschas P.P. Kiyatriton leshchinskiyi Averianov et Voronkevich, 2001, a crown-group salamander from the Lower Cretaceous of Western Siberia, Russia.Cretac. Res. 2014; 51: 88-94https://doi.org/10.1016/j.cretres.2014.05.014Crossref Scopus (10) Google Scholar, Skutschas, 2016Skutschas P.P. A new crown-group salamander from the middle jurassic of western siberia, Russia.Palaeobio. Palaeoenv. 2016; 96: 41-48https://doi.org/10.1007/s12549-015-0216-xCrossref Scopus (10) Google Scholar). Based on the published original description (Zhang and Fan, 2001Zhang L.J. Fan G.Q. Voldotriton [sic] sinensis sp. nov.–a new species of Mesozoic salmander [sic].Land Resour. 2001; 2001: 44-47Google Scholar), we regard the Chinese Middle Jurassic “Voldotriton [sic] sinensis” as potentially hynobiid-like, but because many features of the holotype and only known skeleton were misinterpreted and the specimen has been lost (Gao et al., 2013Gao K.-Q. Chen J. Jia J. Taxonomic diversity, stratigraphic range, and exceptional preservation of Juro-Cretaceous salamanders from northern China.Can. J. Earth Sci. 2013; 50: 255-267https://doi.org/10.1139/e2012-039Crossref Scopus (25) Google Scholar), we exclude that problematic species from clade Panhynobia. Finally, although the Early Cretaceous Laccotriton subsolanus and Sinerpeton fengshanensis from the Jehol Biota in northern China have been regarded as hynobiid-like salamanders (e.g., Gao and Shubin, 2001Gao K.-Q. Shubin N.H. Late Jurassic salamanders from northern China.Nature. 2001; 410: 574-577https://doi.org/10.1038/35069051Crossref PubMed Scopus (116) Google Scholar; Wang and Evans, 2006aWang Y. Evans S.E. Advances in the study of fossil amphibians and squamates from China: the past fifteen years.Vert. Palas. 2006; 44: 60-73Google Scholar; Jia and Gao, 2016aJia J. Gao K.-Q. A new hynobiid-like salamander (Amphibia, Urodela) from Inner Mongolia, China, provides a rare case study of developmental features in an Early Cretaceous fossil urodele.PeerJ. 2016; 4: e2499https://doi.org/10.7717/peerj.2499Crossref PubMed Scopus (14) Google Scholar) but that has not been tested cladistically; for that reason, we also refrain from including those species in clade Panhynobia. Genus Neimengtriton, gen. nov. Type and only known species—Neimengtriton daohugouensis, comb. nov. Diagnosis—As for the type and only known species. Etymology—“Neimeng” (Pinyin), referring to the Nei Mongol (Inner Mongolia) Autonomous Region where the Daohugou locality is located; “triton” (Gr.), suffix commonly used for salamander generic names. Species Neimengtriton daohugouensis, comb. nov. Holotype—IVPP V13393, natural mold of articulated skeleton with stain of body outline, exposed in ventral view on a single slab (type of “Liaoxitriton daohugouensis” by original designation). Type locality and horizon—Daohugou locality, Ningcheng County, Inner Mongolia, China; Middle Jurassic (Bathonian) Haifanggou Formation (Figure 1; see STAR Methods). Paratypes—IVPP V14062, natural mold of skeleton exposed in ventral aspect (Wang, 2004aWang Y. A new Mesozoic caudate (Liaoxitriton daohugouensis sp. nov.) from Inner Mongolia.China. Sci. Bull. 2004; 49:" @default.
- W3167998412 created "2021-06-22" @default.
- W3167998412 creator A5013173462 @default.
- W3167998412 creator A5016196156 @default.
- W3167998412 creator A5063855248 @default.
- W3167998412 date "2021-07-01" @default.
- W3167998412 modified "2023-10-18" @default.
- W3167998412 title "Middle Jurassic stem hynobiids from China shed light on the evolution of basal salamanders" @default.
- W3167998412 cites W1482873748 @default.
- W3167998412 cites W1632789112 @default.
- W3167998412 cites W1663850814 @default.
- W3167998412 cites W1920874772 @default.
- W3167998412 cites W1946434435 @default.
- W3167998412 cites W1963510176 @default.
- W3167998412 cites W1966045831 @default.
- W3167998412 cites W1971983623 @default.
- W3167998412 cites W1976514228 @default.
- W3167998412 cites W1976600499 @default.
- W3167998412 cites W2000097913 @default.
- W3167998412 cites W2004982798 @default.
- W3167998412 cites W2013968513 @default.
- W3167998412 cites W2014672504 @default.
- W3167998412 cites W2018633248 @default.
- W3167998412 cites W2021148512 @default.
- W3167998412 cites W2022751153 @default.
- W3167998412 cites W2026536563 @default.
- W3167998412 cites W2028271102 @default.
- W3167998412 cites W2041334736 @default.
- W3167998412 cites W2059544748 @default.
- W3167998412 cites W2069555578 @default.
- W3167998412 cites W2079458451 @default.
- W3167998412 cites W2080599835 @default.
- W3167998412 cites W2081152623 @default.
- W3167998412 cites W2081710048 @default.
- W3167998412 cites W2081736913 @default.
- W3167998412 cites W2084642422 @default.
- W3167998412 cites W2087672266 @default.
- W3167998412 cites W2089326144 @default.
- W3167998412 cites W2093430057 @default.
- W3167998412 cites W2093952340 @default.
- W3167998412 cites W2096514258 @default.
- W3167998412 cites W2129491952 @default.
- W3167998412 cites W2133645720 @default.
- W3167998412 cites W2135236632 @default.
- W3167998412 cites W2136049840 @default.
- W3167998412 cites W2141914837 @default.
- W3167998412 cites W2143543339 @default.
- W3167998412 cites W2155007860 @default.
- W3167998412 cites W2157664367 @default.
- W3167998412 cites W2157968427 @default.
- W3167998412 cites W2164424975 @default.
- W3167998412 cites W2167687779 @default.
- W3167998412 cites W2174295493 @default.
- W3167998412 cites W2192333704 @default.
- W3167998412 cites W2202540771 @default.
- W3167998412 cites W2342577284 @default.
- W3167998412 cites W2346922416 @default.
- W3167998412 cites W2465573178 @default.
- W3167998412 cites W2470084431 @default.
- W3167998412 cites W2526852763 @default.
- W3167998412 cites W2528595184 @default.
- W3167998412 cites W2572422533 @default.
- W3167998412 cites W2580149893 @default.
- W3167998412 cites W2606397080 @default.
- W3167998412 cites W2752659475 @default.
- W3167998412 cites W2794709180 @default.
- W3167998412 cites W2800798847 @default.
- W3167998412 cites W2898703121 @default.
- W3167998412 cites W2907747157 @default.
- W3167998412 cites W2910218975 @default.
- W3167998412 cites W2914694280 @default.
- W3167998412 cites W2924395231 @default.
- W3167998412 cites W2944451005 @default.
- W3167998412 cites W3007434376 @default.
- W3167998412 doi "https://doi.org/10.1016/j.isci.2021.102744" @default.
- W3167998412 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8264161" @default.
- W3167998412 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34278256" @default.
- W3167998412 hasPublicationYear "2021" @default.
- W3167998412 type Work @default.
- W3167998412 sameAs 3167998412 @default.
- W3167998412 citedByCount "9" @default.
- W3167998412 countsByYear W31679984122022 @default.
- W3167998412 countsByYear W31679984122023 @default.
- W3167998412 crossrefType "journal-article" @default.
- W3167998412 hasAuthorship W3167998412A5013173462 @default.
- W3167998412 hasAuthorship W3167998412A5016196156 @default.
- W3167998412 hasAuthorship W3167998412A5063855248 @default.
- W3167998412 hasBestOaLocation W31679984121 @default.
- W3167998412 hasConcept C134018914 @default.
- W3167998412 hasConcept C151730666 @default.
- W3167998412 hasConcept C166957645 @default.
- W3167998412 hasConcept C191935318 @default.
- W3167998412 hasConcept C205649164 @default.
- W3167998412 hasConcept C2778024521 @default.
- W3167998412 hasConcept C2779306644 @default.
- W3167998412 hasConcept C78458016 @default.
- W3167998412 hasConcept C86803240 @default.
- W3167998412 hasConceptScore W3167998412C134018914 @default.