Matches in SemOpenAlex for { <https://semopenalex.org/work/W3168061873> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3168061873 abstract "<p>Urban land expansion is expected for our changing world, which unmitigated will result in increased flooding and nutrient exports that already wreak havoc on the wellbeing of coupled human-natural systems worldwide. Reforestation of urbanized catchments is one green infrastructure strategy to reduce stormwater volumes and nutrient exports. Reforestation designs must balance the benefits of flood flow reduction against the costs of implementation and the chance to exacerbate droughts via reduction in recharge that supplies low flows. Optimal locations and numbers of trees depend on the spatial distribution of runoff and streamflow in a catchment; however, calibration data are often only available at the catchment outlet. Equifinal model parameterizations for the outlet can result in uncertainty in the locations and magnitudes of streamflows across the catchment, which can lead to different optimal reforestation designs for different parameterizations.</p><p>Multi-objective robust optimization (MORO) has been proposed to discover reforestation designs that are robust to such parametric model uncertainty. However, it has not been shown that this actually results in better decisions than optimizing to a single, most likely parameter set, which would be less computationally expensive. In this work, the utility of MORO is assessed by comparing reforestation designs optimized using these two approaches with reforestation designs optimized to a synthetic true set of hydrologic model parameters. The spatially-distributed RHESSys ecohydrological model is employed for this study of a suburban-forested catchment in Baltimore County, Maryland, USA. Calibration of the model&#8217;s critical parameters is completed using a Bayesian framework to estimate the joint posterior distribution of the parameters. The Bayesian framework estimates the probability that different parameterizations generated the synthetic streamflow data, allowing the MORO process to evaluate reforestation portfolios across a probability-weighted sample of parameter sets in search of solutions that are robust to this uncertainty.</p><p>Reforestation portfolios are designed to minimize flooding, low flow intensity, and construction costs (number of trees). Comparing the Pareto front obtained from using MORO with the Pareto fronts obtained from optimizing to the estimated maximum a posteriori (MAP) parameter set and the synthetic true parameter set, we find that MORO solutions are closer to the synthetic solutions than are MAP solutions. This illustrates the value of considering parametric uncertainty in designing robust water systems despite the additional computational cost.</p>" @default.
- W3168061873 created "2021-06-22" @default.
- W3168061873 creator A5013373817 @default.
- W3168061873 creator A5063458507 @default.
- W3168061873 creator A5065431859 @default.
- W3168061873 creator A5089729061 @default.
- W3168061873 date "2021-03-04" @default.
- W3168061873 modified "2023-10-16" @default.
- W3168061873 title "Multi-objective Optimization of Catchment Reforestation Robust to Uncertainty in Bayesian-Calibrated Watershed Model Parameters" @default.
- W3168061873 doi "https://doi.org/10.5194/egusphere-egu21-6234" @default.
- W3168061873 hasPublicationYear "2021" @default.
- W3168061873 type Work @default.
- W3168061873 sameAs 3168061873 @default.
- W3168061873 citedByCount "0" @default.
- W3168061873 crossrefType "posted-content" @default.
- W3168061873 hasAuthorship W3168061873A5013373817 @default.
- W3168061873 hasAuthorship W3168061873A5063458507 @default.
- W3168061873 hasAuthorship W3168061873A5065431859 @default.
- W3168061873 hasAuthorship W3168061873A5089729061 @default.
- W3168061873 hasConcept C119857082 @default.
- W3168061873 hasConcept C126645576 @default.
- W3168061873 hasConcept C127413603 @default.
- W3168061873 hasConcept C150547873 @default.
- W3168061873 hasConcept C154575652 @default.
- W3168061873 hasConcept C174091901 @default.
- W3168061873 hasConcept C187320778 @default.
- W3168061873 hasConcept C18903297 @default.
- W3168061873 hasConcept C205649164 @default.
- W3168061873 hasConcept C39432304 @default.
- W3168061873 hasConcept C41008148 @default.
- W3168061873 hasConcept C50477045 @default.
- W3168061873 hasConcept C53739315 @default.
- W3168061873 hasConcept C54286561 @default.
- W3168061873 hasConcept C58640448 @default.
- W3168061873 hasConcept C75622301 @default.
- W3168061873 hasConcept C76177295 @default.
- W3168061873 hasConcept C76856003 @default.
- W3168061873 hasConcept C76886044 @default.
- W3168061873 hasConcept C86803240 @default.
- W3168061873 hasConceptScore W3168061873C119857082 @default.
- W3168061873 hasConceptScore W3168061873C126645576 @default.
- W3168061873 hasConceptScore W3168061873C127413603 @default.
- W3168061873 hasConceptScore W3168061873C150547873 @default.
- W3168061873 hasConceptScore W3168061873C154575652 @default.
- W3168061873 hasConceptScore W3168061873C174091901 @default.
- W3168061873 hasConceptScore W3168061873C187320778 @default.
- W3168061873 hasConceptScore W3168061873C18903297 @default.
- W3168061873 hasConceptScore W3168061873C205649164 @default.
- W3168061873 hasConceptScore W3168061873C39432304 @default.
- W3168061873 hasConceptScore W3168061873C41008148 @default.
- W3168061873 hasConceptScore W3168061873C50477045 @default.
- W3168061873 hasConceptScore W3168061873C53739315 @default.
- W3168061873 hasConceptScore W3168061873C54286561 @default.
- W3168061873 hasConceptScore W3168061873C58640448 @default.
- W3168061873 hasConceptScore W3168061873C75622301 @default.
- W3168061873 hasConceptScore W3168061873C76177295 @default.
- W3168061873 hasConceptScore W3168061873C76856003 @default.
- W3168061873 hasConceptScore W3168061873C76886044 @default.
- W3168061873 hasConceptScore W3168061873C86803240 @default.
- W3168061873 hasLocation W31680618731 @default.
- W3168061873 hasOpenAccess W3168061873 @default.
- W3168061873 hasPrimaryLocation W31680618731 @default.
- W3168061873 hasRelatedWork W10006184 @default.
- W3168061873 hasRelatedWork W11663811 @default.
- W3168061873 hasRelatedWork W1978797 @default.
- W3168061873 hasRelatedWork W3156977 @default.
- W3168061873 hasRelatedWork W6077921 @default.
- W3168061873 hasRelatedWork W6879451 @default.
- W3168061873 hasRelatedWork W7573640 @default.
- W3168061873 hasRelatedWork W8482194 @default.
- W3168061873 hasRelatedWork W9558706 @default.
- W3168061873 hasRelatedWork W9759618 @default.
- W3168061873 isParatext "false" @default.
- W3168061873 isRetracted "false" @default.
- W3168061873 magId "3168061873" @default.
- W3168061873 workType "article" @default.