Matches in SemOpenAlex for { <https://semopenalex.org/work/W3168096119> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3168096119 endingPage "8497" @default.
- W3168096119 startingPage "8488" @default.
- W3168096119 abstract "Most of the classification methods of urban functional areas nowadays are only based on single source data analysis and modeling, which can not make full use of the multi-scale and multi-source data that is easy to obtain. Therefore, this paper proposed a classification model of urban functional areas based on multi-modal machine learning, by analyzing regional remote sensing images and behavior data of visitors in the area, using the combination of supervised methods extracted the deep-seated features and relationships of kinds of data, filtered and merged the overall and local features of the data. The model used dual branch neural network combining SE-ResNeXt and Dual Path Network (DPN) to automatically mined and fused the overall characteristics of multi-source data, and used the designed feature engineering to deeply mine the behavior data of users to obtain more association information, then combined the algorithm based on Gradient Boosting Decision Tree to learn the characteristics of different levels and obtained the classification probability for different levels of features. Finally, we continued to use the algorithm based on the Gradient Boosting Decision Tree to learn the probability distribution of different levels of features to obtain the final prediction results of urban functional area classification. Through the analysis and experimental verification of real data sets, the results showed that MM-UrbanFAC model can effectively integrate the features of multi-modal data. Compared with a single classifier, the integration framework based on gradient lifting tree improved the prediction performance, this method can effectively integrate the results of multiple models and accurately classify urban functional areas, and the model can provide reference for tourism recommendation, urban land planning and urban construction." @default.
- W3168096119 created "2021-06-22" @default.
- W3168096119 creator A5010774945 @default.
- W3168096119 creator A5018073672 @default.
- W3168096119 creator A5051300846 @default.
- W3168096119 creator A5086045501 @default.
- W3168096119 creator A5087929961 @default.
- W3168096119 date "2022-07-01" @default.
- W3168096119 modified "2023-10-07" @default.
- W3168096119 title "MM-UrbanFAC: Urban Functional Area Classification Model Based on Multimodal Machine Learning" @default.
- W3168096119 cites W1990444226 @default.
- W3168096119 cites W1995952828 @default.
- W3168096119 cites W2001052226 @default.
- W3168096119 cites W2005292390 @default.
- W3168096119 cites W2024177114 @default.
- W3168096119 cites W2078917018 @default.
- W3168096119 cites W2079672634 @default.
- W3168096119 cites W2085893612 @default.
- W3168096119 cites W2087072474 @default.
- W3168096119 cites W2128254161 @default.
- W3168096119 cites W2167917621 @default.
- W3168096119 cites W2334092286 @default.
- W3168096119 cites W2346792925 @default.
- W3168096119 cites W236257283 @default.
- W3168096119 cites W2544770515 @default.
- W3168096119 cites W2789758093 @default.
- W3168096119 cites W2790369295 @default.
- W3168096119 cites W2884721255 @default.
- W3168096119 cites W2902240328 @default.
- W3168096119 cites W2963901018 @default.
- W3168096119 cites W3102476541 @default.
- W3168096119 doi "https://doi.org/10.1109/tits.2021.3083486" @default.
- W3168096119 hasPublicationYear "2022" @default.
- W3168096119 type Work @default.
- W3168096119 sameAs 3168096119 @default.
- W3168096119 citedByCount "4" @default.
- W3168096119 countsByYear W31680961192022 @default.
- W3168096119 countsByYear W31680961192023 @default.
- W3168096119 crossrefType "journal-article" @default.
- W3168096119 hasAuthorship W3168096119A5010774945 @default.
- W3168096119 hasAuthorship W3168096119A5018073672 @default.
- W3168096119 hasAuthorship W3168096119A5051300846 @default.
- W3168096119 hasAuthorship W3168096119A5086045501 @default.
- W3168096119 hasAuthorship W3168096119A5087929961 @default.
- W3168096119 hasConcept C119857082 @default.
- W3168096119 hasConcept C12267149 @default.
- W3168096119 hasConcept C124101348 @default.
- W3168096119 hasConcept C153180895 @default.
- W3168096119 hasConcept C154945302 @default.
- W3168096119 hasConcept C169258074 @default.
- W3168096119 hasConcept C185592680 @default.
- W3168096119 hasConcept C188027245 @default.
- W3168096119 hasConcept C41008148 @default.
- W3168096119 hasConcept C46686674 @default.
- W3168096119 hasConcept C50644808 @default.
- W3168096119 hasConcept C70153297 @default.
- W3168096119 hasConcept C71139939 @default.
- W3168096119 hasConcept C84525736 @default.
- W3168096119 hasConcept C95623464 @default.
- W3168096119 hasConceptScore W3168096119C119857082 @default.
- W3168096119 hasConceptScore W3168096119C12267149 @default.
- W3168096119 hasConceptScore W3168096119C124101348 @default.
- W3168096119 hasConceptScore W3168096119C153180895 @default.
- W3168096119 hasConceptScore W3168096119C154945302 @default.
- W3168096119 hasConceptScore W3168096119C169258074 @default.
- W3168096119 hasConceptScore W3168096119C185592680 @default.
- W3168096119 hasConceptScore W3168096119C188027245 @default.
- W3168096119 hasConceptScore W3168096119C41008148 @default.
- W3168096119 hasConceptScore W3168096119C46686674 @default.
- W3168096119 hasConceptScore W3168096119C50644808 @default.
- W3168096119 hasConceptScore W3168096119C70153297 @default.
- W3168096119 hasConceptScore W3168096119C71139939 @default.
- W3168096119 hasConceptScore W3168096119C84525736 @default.
- W3168096119 hasConceptScore W3168096119C95623464 @default.
- W3168096119 hasFunder F4320321001 @default.
- W3168096119 hasIssue "7" @default.
- W3168096119 hasLocation W31680961191 @default.
- W3168096119 hasOpenAccess W3168096119 @default.
- W3168096119 hasPrimaryLocation W31680961191 @default.
- W3168096119 hasRelatedWork W3080602699 @default.
- W3168096119 hasRelatedWork W3200719183 @default.
- W3168096119 hasRelatedWork W3212730154 @default.
- W3168096119 hasRelatedWork W4200057378 @default.
- W3168096119 hasRelatedWork W4249229055 @default.
- W3168096119 hasRelatedWork W4280489286 @default.
- W3168096119 hasRelatedWork W4288057626 @default.
- W3168096119 hasRelatedWork W4292373754 @default.
- W3168096119 hasRelatedWork W4293069612 @default.
- W3168096119 hasRelatedWork W4308654587 @default.
- W3168096119 hasVolume "23" @default.
- W3168096119 isParatext "false" @default.
- W3168096119 isRetracted "false" @default.
- W3168096119 magId "3168096119" @default.
- W3168096119 workType "article" @default.