Matches in SemOpenAlex for { <https://semopenalex.org/work/W3168146089> ?p ?o ?g. }
- W3168146089 endingPage "5981" @default.
- W3168146089 startingPage "5961" @default.
- W3168146089 abstract "Randomized trials typically estimate average relative treatment effects, but decisions on the benefit of a treatment are possibly better informed by more individualized predictions of the absolute treatment effect. In case of a binary outcome, these predictions of absolute individualized treatment effect require knowledge of the individual's risk without treatment and incorporation of a possibly differential treatment effect (i.e. varying with patient characteristics). In this paper we lay out the causal structure of individualized treatment effect in terms of potential outcomes and describe the required assumptions that underlie a causal interpretation of its prediction. Subsequently, we describe regression models and model estimation techniques that can be used to move from average to more individualized treatment effect predictions. We focus mainly on logistic regression-based methods that are both well-known and naturally provide the required probabilistic estimates. We incorporate key components from both causal inference and prediction research to arrive at individualized treatment effect predictions. While the separate components are well known, their successful amalgamation is very much an ongoing field of research. We cut the problem down to its essentials in the setting of a randomized trial, discuss the importance of a clear definition of the estimand of interest, provide insight into the required assumptions, and give guidance with respect to modeling and estimation options. Simulated data illustrates the potential of different modeling options across scenarios that vary both average treatment effect and treatment effect heterogeneity. Two applied examples illustrate individualized treatment effect prediction in randomized trial data." @default.
- W3168146089 created "2021-06-22" @default.
- W3168146089 creator A5000034702 @default.
- W3168146089 creator A5002390430 @default.
- W3168146089 creator A5007039126 @default.
- W3168146089 creator A5026647620 @default.
- W3168146089 creator A5040942978 @default.
- W3168146089 creator A5042352003 @default.
- W3168146089 creator A5050809945 @default.
- W3168146089 creator A5053996737 @default.
- W3168146089 creator A5086841102 @default.
- W3168146089 date "2021-08-16" @default.
- W3168146089 modified "2023-10-01" @default.
- W3168146089 title "A tutorial on individualized treatment effect prediction from randomized trials with a binary endpoint" @default.
- W3168146089 cites W1498265361 @default.
- W3168146089 cites W1516659296 @default.
- W3168146089 cites W1523985187 @default.
- W3168146089 cites W1602160603 @default.
- W3168146089 cites W167864499 @default.
- W3168146089 cites W1750038386 @default.
- W3168146089 cites W1973682096 @default.
- W3168146089 cites W1976821827 @default.
- W3168146089 cites W1978108654 @default.
- W3168146089 cites W1980722267 @default.
- W3168146089 cites W2007689247 @default.
- W3168146089 cites W2034640205 @default.
- W3168146089 cites W2039414656 @default.
- W3168146089 cites W2045337988 @default.
- W3168146089 cites W2045803758 @default.
- W3168146089 cites W2063978378 @default.
- W3168146089 cites W2084396669 @default.
- W3168146089 cites W2095967516 @default.
- W3168146089 cites W2097360283 @default.
- W3168146089 cites W2101432452 @default.
- W3168146089 cites W2107053960 @default.
- W3168146089 cites W2115709314 @default.
- W3168146089 cites W2120539875 @default.
- W3168146089 cites W2128780239 @default.
- W3168146089 cites W2132917208 @default.
- W3168146089 cites W2150300473 @default.
- W3168146089 cites W2153646525 @default.
- W3168146089 cites W2162690060 @default.
- W3168146089 cites W2163130233 @default.
- W3168146089 cites W2165980650 @default.
- W3168146089 cites W2208550830 @default.
- W3168146089 cites W2318763565 @default.
- W3168146089 cites W2396610607 @default.
- W3168146089 cites W2554140069 @default.
- W3168146089 cites W2582129089 @default.
- W3168146089 cites W2764336450 @default.
- W3168146089 cites W2767884503 @default.
- W3168146089 cites W2801490189 @default.
- W3168146089 cites W2809949684 @default.
- W3168146089 cites W2811476149 @default.
- W3168146089 cites W2883214080 @default.
- W3168146089 cites W2891381594 @default.
- W3168146089 cites W2898559532 @default.
- W3168146089 cites W2903127325 @default.
- W3168146089 cites W2904040183 @default.
- W3168146089 cites W2911964244 @default.
- W3168146089 cites W2921052239 @default.
- W3168146089 cites W2962727190 @default.
- W3168146089 cites W2986844826 @default.
- W3168146089 cites W3012413426 @default.
- W3168146089 cites W3021476651 @default.
- W3168146089 cites W3024192828 @default.
- W3168146089 cites W3028032558 @default.
- W3168146089 cites W3028885010 @default.
- W3168146089 cites W3039617216 @default.
- W3168146089 cites W3040185979 @default.
- W3168146089 cites W3087798065 @default.
- W3168146089 cites W3093678378 @default.
- W3168146089 cites W3098865414 @default.
- W3168146089 cites W3113318772 @default.
- W3168146089 cites W3128511017 @default.
- W3168146089 cites W3156127058 @default.
- W3168146089 cites W3168146089 @default.
- W3168146089 cites W4213286494 @default.
- W3168146089 cites W4229753260 @default.
- W3168146089 cites W4234698323 @default.
- W3168146089 cites W4290749263 @default.
- W3168146089 cites W4294541781 @default.
- W3168146089 cites W4299960933 @default.
- W3168146089 doi "https://doi.org/10.1002/sim.9154" @default.
- W3168146089 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34402094" @default.
- W3168146089 hasPublicationYear "2021" @default.
- W3168146089 type Work @default.
- W3168146089 sameAs 3168146089 @default.
- W3168146089 citedByCount "16" @default.
- W3168146089 countsByYear W31681460892021 @default.
- W3168146089 countsByYear W31681460892022 @default.
- W3168146089 countsByYear W31681460892023 @default.
- W3168146089 crossrefType "journal-article" @default.
- W3168146089 hasAuthorship W3168146089A5000034702 @default.
- W3168146089 hasAuthorship W3168146089A5002390430 @default.
- W3168146089 hasAuthorship W3168146089A5007039126 @default.
- W3168146089 hasAuthorship W3168146089A5026647620 @default.
- W3168146089 hasAuthorship W3168146089A5040942978 @default.