Matches in SemOpenAlex for { <https://semopenalex.org/work/W3168147130> ?p ?o ?g. }
- W3168147130 endingPage "107221" @default.
- W3168147130 startingPage "107221" @default.
- W3168147130 abstract "Support vector machines (SVMs) have been exploited in a plethora of real-life classification and regression tasks, and are one of the most researched supervised learners. However, their generalization abilities strongly depend on the pivotal hyperparameters of the classifier, alongside its training dataset. Also, the training process is computationally and memory expensive, hence learning multiple SVMs to grid-search the hyperparameter space is infeasible in practice. In this paper, we address the problem of optimizing SVMs for binary classification of difficult datasets, including very large and extremely imbalanced cases. We propose an evolutionary technique that simultaneously optimizes the critical SVM aspects, including the training sample, kernel functions, and features. Also, we introduce a co-evolutionary scheme that allows us to guide the search in a competitive way to the highest-quality solutions. Our extensive experimental study performed over more than 120 benchmarks showed that the proposed algorithm outperforms popular supervised learners, as well as other techniques for optimizing SVMs reported in the literature." @default.
- W3168147130 created "2021-06-22" @default.
- W3168147130 creator A5041796575 @default.
- W3168147130 creator A5049852261 @default.
- W3168147130 creator A5086221093 @default.
- W3168147130 date "2021-09-01" @default.
- W3168147130 modified "2023-10-17" @default.
- W3168147130 title "Evolving data-adaptive support vector machines for binary classification" @default.
- W3168147130 cites W1751962365 @default.
- W3168147130 cites W1965575648 @default.
- W3168147130 cites W1965850651 @default.
- W3168147130 cites W1981810861 @default.
- W3168147130 cites W1993301396 @default.
- W3168147130 cites W1995013121 @default.
- W3168147130 cites W2015570745 @default.
- W3168147130 cites W2032982318 @default.
- W3168147130 cites W2047300736 @default.
- W3168147130 cites W2049436727 @default.
- W3168147130 cites W2054291723 @default.
- W3168147130 cites W2056132907 @default.
- W3168147130 cites W2060166505 @default.
- W3168147130 cites W2070556583 @default.
- W3168147130 cites W2090727353 @default.
- W3168147130 cites W2113365487 @default.
- W3168147130 cites W2153635508 @default.
- W3168147130 cites W2168031673 @default.
- W3168147130 cites W2169803171 @default.
- W3168147130 cites W2170860445 @default.
- W3168147130 cites W2210091575 @default.
- W3168147130 cites W2216946510 @default.
- W3168147130 cites W2339348828 @default.
- W3168147130 cites W2505990019 @default.
- W3168147130 cites W2511310340 @default.
- W3168147130 cites W2531479340 @default.
- W3168147130 cites W2550932679 @default.
- W3168147130 cites W2555064040 @default.
- W3168147130 cites W2564781577 @default.
- W3168147130 cites W2604867865 @default.
- W3168147130 cites W2620760558 @default.
- W3168147130 cites W2631347859 @default.
- W3168147130 cites W2727422487 @default.
- W3168147130 cites W2735504296 @default.
- W3168147130 cites W2736396799 @default.
- W3168147130 cites W2747895175 @default.
- W3168147130 cites W2765650334 @default.
- W3168147130 cites W2782485997 @default.
- W3168147130 cites W2789357920 @default.
- W3168147130 cites W2790825252 @default.
- W3168147130 cites W2791997396 @default.
- W3168147130 cites W2794048982 @default.
- W3168147130 cites W2854243379 @default.
- W3168147130 cites W2891516347 @default.
- W3168147130 cites W2897040237 @default.
- W3168147130 cites W2901421269 @default.
- W3168147130 cites W2920808318 @default.
- W3168147130 cites W2920881684 @default.
- W3168147130 cites W2921581423 @default.
- W3168147130 cites W2924868743 @default.
- W3168147130 cites W2940770643 @default.
- W3168147130 cites W2956155297 @default.
- W3168147130 cites W2973554453 @default.
- W3168147130 cites W2975374233 @default.
- W3168147130 cites W2999309192 @default.
- W3168147130 cites W3004515507 @default.
- W3168147130 cites W3017078175 @default.
- W3168147130 cites W3045004532 @default.
- W3168147130 cites W3099934359 @default.
- W3168147130 cites W3148714132 @default.
- W3168147130 cites W3158247813 @default.
- W3168147130 cites W319032569 @default.
- W3168147130 cites W4239510810 @default.
- W3168147130 doi "https://doi.org/10.1016/j.knosys.2021.107221" @default.
- W3168147130 hasPublicationYear "2021" @default.
- W3168147130 type Work @default.
- W3168147130 sameAs 3168147130 @default.
- W3168147130 citedByCount "13" @default.
- W3168147130 countsByYear W31681471302022 @default.
- W3168147130 countsByYear W31681471302023 @default.
- W3168147130 crossrefType "journal-article" @default.
- W3168147130 hasAuthorship W3168147130A5041796575 @default.
- W3168147130 hasAuthorship W3168147130A5049852261 @default.
- W3168147130 hasAuthorship W3168147130A5086221093 @default.
- W3168147130 hasConcept C10485038 @default.
- W3168147130 hasConcept C119857082 @default.
- W3168147130 hasConcept C12267149 @default.
- W3168147130 hasConcept C124101348 @default.
- W3168147130 hasConcept C125168437 @default.
- W3168147130 hasConcept C134306372 @default.
- W3168147130 hasConcept C14948415 @default.
- W3168147130 hasConcept C153180895 @default.
- W3168147130 hasConcept C154945302 @default.
- W3168147130 hasConcept C159149176 @default.
- W3168147130 hasConcept C177148314 @default.
- W3168147130 hasConcept C33923547 @default.
- W3168147130 hasConcept C41008148 @default.
- W3168147130 hasConcept C48372109 @default.
- W3168147130 hasConcept C66905080 @default.
- W3168147130 hasConcept C8642999 @default.