Matches in SemOpenAlex for { <https://semopenalex.org/work/W3168167730> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3168167730 endingPage "23" @default.
- W3168167730 startingPage "13" @default.
- W3168167730 abstract "COVID-19 is an infectious disease caused by SARS-Cov2 that has spread rapidly worldwide. According to the World Health Organization (WHO), the total cases of 4374783839 are reported from different countries. In this consequence, it is necessary to diagnose automatically COVID-19, which helps in prevention during spreading among people. In this study, we have used machine learning techniques to diagnose and classify the COVID-19 and normal patients from chest X-ray images using a machine learning technique. The proposed system involves pre-processing, feature extraction, and classification. In the pre-processing, the image is to enhance and improve the contrast. In the feature extraction, the Histogram of Oriented Gradients has been applied to extract the image's feature. Finally, in classification two different machine learning techniques (Support Vector Machine and Logistic Regression) have been used to classify COVID-19 and normal patients. The result analysis shows that the SVM achieved the highest accuracy of 96% and provide a better result than logistic regression (92% accuracy)." @default.
- W3168167730 created "2021-06-22" @default.
- W3168167730 creator A5016996520 @default.
- W3168167730 creator A5018365853 @default.
- W3168167730 creator A5031327366 @default.
- W3168167730 creator A5081194549 @default.
- W3168167730 creator A5085036999 @default.
- W3168167730 date "2021-01-01" @default.
- W3168167730 modified "2023-10-01" @default.
- W3168167730 title "COVID-19 Lung Image Classification Based on Logistic Regression and Support Vector Machine" @default.
- W3168167730 cites W2998445959 @default.
- W3168167730 cites W3001118548 @default.
- W3168167730 cites W3009654169 @default.
- W3168167730 cites W3010702679 @default.
- W3168167730 cites W3011414569 @default.
- W3168167730 cites W3015619547 @default.
- W3168167730 cites W3022163878 @default.
- W3168167730 cites W3030109869 @default.
- W3168167730 cites W3036674813 @default.
- W3168167730 cites W3038821093 @default.
- W3168167730 cites W3047612408 @default.
- W3168167730 cites W3083753334 @default.
- W3168167730 cites W3086039674 @default.
- W3168167730 cites W3094100489 @default.
- W3168167730 cites W3104769194 @default.
- W3168167730 doi "https://doi.org/10.1007/978-3-030-77246-8_2" @default.
- W3168167730 hasPublicationYear "2021" @default.
- W3168167730 type Work @default.
- W3168167730 sameAs 3168167730 @default.
- W3168167730 citedByCount "10" @default.
- W3168167730 countsByYear W31681677302022 @default.
- W3168167730 countsByYear W31681677302023 @default.
- W3168167730 crossrefType "book-chapter" @default.
- W3168167730 hasAuthorship W3168167730A5016996520 @default.
- W3168167730 hasAuthorship W3168167730A5018365853 @default.
- W3168167730 hasAuthorship W3168167730A5031327366 @default.
- W3168167730 hasAuthorship W3168167730A5081194549 @default.
- W3168167730 hasAuthorship W3168167730A5085036999 @default.
- W3168167730 hasConcept C115961682 @default.
- W3168167730 hasConcept C119857082 @default.
- W3168167730 hasConcept C12267149 @default.
- W3168167730 hasConcept C138885662 @default.
- W3168167730 hasConcept C142724271 @default.
- W3168167730 hasConcept C151956035 @default.
- W3168167730 hasConcept C153180895 @default.
- W3168167730 hasConcept C154945302 @default.
- W3168167730 hasConcept C17426736 @default.
- W3168167730 hasConcept C2776401178 @default.
- W3168167730 hasConcept C2779134260 @default.
- W3168167730 hasConcept C3008058167 @default.
- W3168167730 hasConcept C41008148 @default.
- W3168167730 hasConcept C41895202 @default.
- W3168167730 hasConcept C524204448 @default.
- W3168167730 hasConcept C52622490 @default.
- W3168167730 hasConcept C53533937 @default.
- W3168167730 hasConcept C71924100 @default.
- W3168167730 hasConcept C9417928 @default.
- W3168167730 hasConceptScore W3168167730C115961682 @default.
- W3168167730 hasConceptScore W3168167730C119857082 @default.
- W3168167730 hasConceptScore W3168167730C12267149 @default.
- W3168167730 hasConceptScore W3168167730C138885662 @default.
- W3168167730 hasConceptScore W3168167730C142724271 @default.
- W3168167730 hasConceptScore W3168167730C151956035 @default.
- W3168167730 hasConceptScore W3168167730C153180895 @default.
- W3168167730 hasConceptScore W3168167730C154945302 @default.
- W3168167730 hasConceptScore W3168167730C17426736 @default.
- W3168167730 hasConceptScore W3168167730C2776401178 @default.
- W3168167730 hasConceptScore W3168167730C2779134260 @default.
- W3168167730 hasConceptScore W3168167730C3008058167 @default.
- W3168167730 hasConceptScore W3168167730C41008148 @default.
- W3168167730 hasConceptScore W3168167730C41895202 @default.
- W3168167730 hasConceptScore W3168167730C524204448 @default.
- W3168167730 hasConceptScore W3168167730C52622490 @default.
- W3168167730 hasConceptScore W3168167730C53533937 @default.
- W3168167730 hasConceptScore W3168167730C71924100 @default.
- W3168167730 hasConceptScore W3168167730C9417928 @default.
- W3168167730 hasLocation W31681677301 @default.
- W3168167730 hasOpenAccess W3168167730 @default.
- W3168167730 hasPrimaryLocation W31681677301 @default.
- W3168167730 hasRelatedWork W1995536880 @default.
- W3168167730 hasRelatedWork W2134786086 @default.
- W3168167730 hasRelatedWork W2336974148 @default.
- W3168167730 hasRelatedWork W2380902646 @default.
- W3168167730 hasRelatedWork W2550539038 @default.
- W3168167730 hasRelatedWork W2620723295 @default.
- W3168167730 hasRelatedWork W2767563364 @default.
- W3168167730 hasRelatedWork W2779573348 @default.
- W3168167730 hasRelatedWork W4255221925 @default.
- W3168167730 hasRelatedWork W2345184372 @default.
- W3168167730 isParatext "false" @default.
- W3168167730 isRetracted "false" @default.
- W3168167730 magId "3168167730" @default.
- W3168167730 workType "book-chapter" @default.