Matches in SemOpenAlex for { <https://semopenalex.org/work/W3168204680> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3168204680 endingPage "109216" @default.
- W3168204680 startingPage "109216" @default.
- W3168204680 abstract "Social interest in autonomous navigation systems for autonomous ships is also increasing. For a robust autonomous navigation system, the location, speed, and direction of the ship and other ships must be identified in real time, and collision avoidance should be performed at an appropriate time by considering the collision risk. In this study, we proposed a collision avoidance method that quantitatively assesses the collision risk and then generates an avoidance path. First, to assess the collision risk, a collision risk assessment method based on the ship domain and the closest point of approach (CPA) was proposed. The ship domain is created with an asymmetric shape considering manoeuvring performance and the COLREGs. The CPA is used to assess quantitative collision risk value. Subsequently, a path generation algorithm based on deep reinforcement learning (DRL) was proposed to determine the avoidance time and to generate an avoidance path complying the COLREGs for the most dangerous ship in terms of collision risk. The information of own ship and target ship such as location, speed, heading, collision risk is used as the input state, and the rudder angle of own ship is set as the output action of the DRL. The cost function related to the path following and the collision avoidance is defined as the reward of the DRL-based collision avoidance method. Additionally, the DRL modes are defined to navigate the flexible avoidance path by changing the ratio between the path following and the collision avoidance. To verify the proposed method, we compared the collision avoidance method with the A* algorithm, which is a traditional path planning algorithm, and analyzed the results for various scenarios. The proposed method reliably avoided collisions through flexible paths for complex and unexpected changes in situations compared to the A* algorithm. • This study deals with a ship collision avoidance method considering COLREGs. • The proposed method considers both path following and collision avoidance. • Deep reinforcement learning is used to handle unexpected changes in situations. • The proposed method shows good performance for various validation situations." @default.
- W3168204680 created "2021-06-22" @default.
- W3168204680 creator A5001861363 @default.
- W3168204680 creator A5025176891 @default.
- W3168204680 creator A5077582818 @default.
- W3168204680 creator A5081813546 @default.
- W3168204680 creator A5087823246 @default.
- W3168204680 date "2021-08-01" @default.
- W3168204680 modified "2023-10-03" @default.
- W3168204680 title "Deep reinforcement learning-based collision avoidance for an autonomous ship" @default.
- W3168204680 cites W1756030129 @default.
- W3168204680 cites W2059322859 @default.
- W3168204680 cites W2073122481 @default.
- W3168204680 cites W2076089699 @default.
- W3168204680 cites W2149137843 @default.
- W3168204680 cites W2149441069 @default.
- W3168204680 cites W2162957446 @default.
- W3168204680 cites W2167328406 @default.
- W3168204680 cites W2213101715 @default.
- W3168204680 cites W2484617215 @default.
- W3168204680 cites W2503089629 @default.
- W3168204680 cites W2617376550 @default.
- W3168204680 cites W2728420778 @default.
- W3168204680 cites W2760265646 @default.
- W3168204680 cites W2802228104 @default.
- W3168204680 cites W2922120529 @default.
- W3168204680 cites W2936083141 @default.
- W3168204680 cites W2976348340 @default.
- W3168204680 cites W2979089101 @default.
- W3168204680 cites W2980300602 @default.
- W3168204680 cites W2982006722 @default.
- W3168204680 cites W3005337831 @default.
- W3168204680 cites W3057330010 @default.
- W3168204680 cites W4233452110 @default.
- W3168204680 doi "https://doi.org/10.1016/j.oceaneng.2021.109216" @default.
- W3168204680 hasPublicationYear "2021" @default.
- W3168204680 type Work @default.
- W3168204680 sameAs 3168204680 @default.
- W3168204680 citedByCount "46" @default.
- W3168204680 countsByYear W31682046802021 @default.
- W3168204680 countsByYear W31682046802022 @default.
- W3168204680 countsByYear W31682046802023 @default.
- W3168204680 crossrefType "journal-article" @default.
- W3168204680 hasAuthorship W3168204680A5001861363 @default.
- W3168204680 hasAuthorship W3168204680A5025176891 @default.
- W3168204680 hasAuthorship W3168204680A5077582818 @default.
- W3168204680 hasAuthorship W3168204680A5081813546 @default.
- W3168204680 hasAuthorship W3168204680A5087823246 @default.
- W3168204680 hasConcept C121704057 @default.
- W3168204680 hasConcept C127413603 @default.
- W3168204680 hasConcept C146978453 @default.
- W3168204680 hasConcept C154945302 @default.
- W3168204680 hasConcept C183776436 @default.
- W3168204680 hasConcept C199104240 @default.
- W3168204680 hasConcept C199360897 @default.
- W3168204680 hasConcept C2776937971 @default.
- W3168204680 hasConcept C2777735758 @default.
- W3168204680 hasConcept C2780864053 @default.
- W3168204680 hasConcept C38652104 @default.
- W3168204680 hasConcept C41008148 @default.
- W3168204680 hasConcept C44154836 @default.
- W3168204680 hasConcept C97541855 @default.
- W3168204680 hasConceptScore W3168204680C121704057 @default.
- W3168204680 hasConceptScore W3168204680C127413603 @default.
- W3168204680 hasConceptScore W3168204680C146978453 @default.
- W3168204680 hasConceptScore W3168204680C154945302 @default.
- W3168204680 hasConceptScore W3168204680C183776436 @default.
- W3168204680 hasConceptScore W3168204680C199104240 @default.
- W3168204680 hasConceptScore W3168204680C199360897 @default.
- W3168204680 hasConceptScore W3168204680C2776937971 @default.
- W3168204680 hasConceptScore W3168204680C2777735758 @default.
- W3168204680 hasConceptScore W3168204680C2780864053 @default.
- W3168204680 hasConceptScore W3168204680C38652104 @default.
- W3168204680 hasConceptScore W3168204680C41008148 @default.
- W3168204680 hasConceptScore W3168204680C44154836 @default.
- W3168204680 hasConceptScore W3168204680C97541855 @default.
- W3168204680 hasFunder F4320321624 @default.
- W3168204680 hasLocation W31682046801 @default.
- W3168204680 hasOpenAccess W3168204680 @default.
- W3168204680 hasPrimaryLocation W31682046801 @default.
- W3168204680 hasRelatedWork W1964916817 @default.
- W3168204680 hasRelatedWork W2016568326 @default.
- W3168204680 hasRelatedWork W2032256691 @default.
- W3168204680 hasRelatedWork W2093447302 @default.
- W3168204680 hasRelatedWork W2138962430 @default.
- W3168204680 hasRelatedWork W2143920253 @default.
- W3168204680 hasRelatedWork W2231948758 @default.
- W3168204680 hasRelatedWork W3168204680 @default.
- W3168204680 hasRelatedWork W4224853190 @default.
- W3168204680 hasRelatedWork W4295115946 @default.
- W3168204680 hasVolume "234" @default.
- W3168204680 isParatext "false" @default.
- W3168204680 isRetracted "false" @default.
- W3168204680 magId "3168204680" @default.
- W3168204680 workType "article" @default.