Matches in SemOpenAlex for { <https://semopenalex.org/work/W3168208032> ?p ?o ?g. }
- W3168208032 endingPage "12" @default.
- W3168208032 startingPage "1" @default.
- W3168208032 abstract "Epileptic EEG signal recognition is an important method for epilepsy detection. In essence, epileptic EEG signal recognition is a typical imbalanced classification task. However, traditional machine learning methods used for imbalanced epileptic EEG signal recognition face many challenges: (1) traditional machine learning methods often ignore the imbalance of epileptic EEG signals, which leads to misclassification of positive samples and may cause serious consequences and (2) the existing imbalanced classification methods ignore the interrelationship between samples, resulting in poor classification performance. To overcome these challenges, a graph-based extreme learning machine method (G-ELM) is proposed for imbalanced epileptic EEG signal recognition. The proposed method uses graph theory to construct a relationship graph of samples according to data distribution. Then, a model combining the relationship graph and ELM is constructed; it inherits the rapid learning and good generalization capabilities of ELM and improves the classification performance. Experiments on a real imbalanced epileptic EEG dataset demonstrated the effectiveness and applicability of the proposed method." @default.
- W3168208032 created "2021-06-22" @default.
- W3168208032 creator A5021456147 @default.
- W3168208032 creator A5051074074 @default.
- W3168208032 creator A5059722188 @default.
- W3168208032 date "2021-06-12" @default.
- W3168208032 modified "2023-10-15" @default.
- W3168208032 title "Recognition of Imbalanced Epileptic EEG Signals by a Graph-Based Extreme Learning Machine" @default.
- W3168208032 cites W1850407572 @default.
- W3168208032 cites W1964494592 @default.
- W3168208032 cites W1979148805 @default.
- W3168208032 cites W2008771257 @default.
- W3168208032 cites W2039163401 @default.
- W3168208032 cites W2053744708 @default.
- W3168208032 cites W2054573701 @default.
- W3168208032 cites W2059016985 @default.
- W3168208032 cites W2066877763 @default.
- W3168208032 cites W2070771761 @default.
- W3168208032 cites W2073788174 @default.
- W3168208032 cites W2074435087 @default.
- W3168208032 cites W2076637413 @default.
- W3168208032 cites W2078622091 @default.
- W3168208032 cites W2078793534 @default.
- W3168208032 cites W2080966422 @default.
- W3168208032 cites W2089951337 @default.
- W3168208032 cites W2107619715 @default.
- W3168208032 cites W2111072639 @default.
- W3168208032 cites W2132240828 @default.
- W3168208032 cites W2134603844 @default.
- W3168208032 cites W2148870099 @default.
- W3168208032 cites W2155129393 @default.
- W3168208032 cites W2160867523 @default.
- W3168208032 cites W2246329527 @default.
- W3168208032 cites W2249814854 @default.
- W3168208032 cites W2343174050 @default.
- W3168208032 cites W2408157549 @default.
- W3168208032 cites W2488522966 @default.
- W3168208032 cites W2587488580 @default.
- W3168208032 cites W2618227995 @default.
- W3168208032 cites W2623028730 @default.
- W3168208032 cites W2738051834 @default.
- W3168208032 cites W2803781749 @default.
- W3168208032 cites W2804073332 @default.
- W3168208032 cites W2810229480 @default.
- W3168208032 cites W2905314455 @default.
- W3168208032 cites W2921318792 @default.
- W3168208032 cites W2970613722 @default.
- W3168208032 cites W2970660463 @default.
- W3168208032 cites W2997706891 @default.
- W3168208032 cites W3036529732 @default.
- W3168208032 cites W3083413673 @default.
- W3168208032 cites W3087050764 @default.
- W3168208032 cites W3094480217 @default.
- W3168208032 cites W3125537303 @default.
- W3168208032 doi "https://doi.org/10.1155/2021/5871684" @default.
- W3168208032 hasPublicationYear "2021" @default.
- W3168208032 type Work @default.
- W3168208032 sameAs 3168208032 @default.
- W3168208032 citedByCount "29" @default.
- W3168208032 countsByYear W31682080322021 @default.
- W3168208032 countsByYear W31682080322022 @default.
- W3168208032 countsByYear W31682080322023 @default.
- W3168208032 crossrefType "journal-article" @default.
- W3168208032 hasAuthorship W3168208032A5021456147 @default.
- W3168208032 hasAuthorship W3168208032A5051074074 @default.
- W3168208032 hasAuthorship W3168208032A5059722188 @default.
- W3168208032 hasBestOaLocation W31682080321 @default.
- W3168208032 hasConcept C119857082 @default.
- W3168208032 hasConcept C132525143 @default.
- W3168208032 hasConcept C134306372 @default.
- W3168208032 hasConcept C153180895 @default.
- W3168208032 hasConcept C154945302 @default.
- W3168208032 hasConcept C15744967 @default.
- W3168208032 hasConcept C169760540 @default.
- W3168208032 hasConcept C177148314 @default.
- W3168208032 hasConcept C2778186239 @default.
- W3168208032 hasConcept C2779334592 @default.
- W3168208032 hasConcept C2780150128 @default.
- W3168208032 hasConcept C33923547 @default.
- W3168208032 hasConcept C41008148 @default.
- W3168208032 hasConcept C50644808 @default.
- W3168208032 hasConcept C522805319 @default.
- W3168208032 hasConcept C80444323 @default.
- W3168208032 hasConceptScore W3168208032C119857082 @default.
- W3168208032 hasConceptScore W3168208032C132525143 @default.
- W3168208032 hasConceptScore W3168208032C134306372 @default.
- W3168208032 hasConceptScore W3168208032C153180895 @default.
- W3168208032 hasConceptScore W3168208032C154945302 @default.
- W3168208032 hasConceptScore W3168208032C15744967 @default.
- W3168208032 hasConceptScore W3168208032C169760540 @default.
- W3168208032 hasConceptScore W3168208032C177148314 @default.
- W3168208032 hasConceptScore W3168208032C2778186239 @default.
- W3168208032 hasConceptScore W3168208032C2779334592 @default.
- W3168208032 hasConceptScore W3168208032C2780150128 @default.
- W3168208032 hasConceptScore W3168208032C33923547 @default.
- W3168208032 hasConceptScore W3168208032C41008148 @default.
- W3168208032 hasConceptScore W3168208032C50644808 @default.
- W3168208032 hasConceptScore W3168208032C522805319 @default.