Matches in SemOpenAlex for { <https://semopenalex.org/work/W3168227557> ?p ?o ?g. }
- W3168227557 endingPage "42" @default.
- W3168227557 startingPage "1" @default.
- W3168227557 abstract "Abstract In this study, four machine learning (ML) models (gradient boost decision tree (GBDT), light gradient boosting machine (LightGBM), categorical boosting (CatBoost) and extreme gradient boosting (XGBoost)) are used to perform seasonal forecasts for non-monsoonal winter precipitation over the Eurasian continent (30-60°N, 30-105°E) (NWPE). The seasonal forecast results from a traditional linear regression (LR) model and two dynamic models are compared. The ML and LR models are trained using the data for the period of 1979-2010, and then, these empirical models are used to perform the seasonal forecast of NWPE for 2011-2018. Our results show that the four ML models have reasonable seasonal forecast skills for the NWPE and clearly outperform the LR model. The ML models and the dynamic models have skillful forecasts for the NWPE over different regions. The ensemble means of the forecasts including the ML models and dynamic models show higher forecast skill for the NWEP than the ensemble mean of the dynamic-only models. The forecast skill of the ML models mainly benefits from a skillful forecast of the third empirical orthogonal function (EOF) mode (EOF3) of the NWPE, which has a good and consistent prediction among the ML models. Our results also illustrate that the sea ice over the Arctic in the previous autumn is the most important predictor in the ML models in forecasting the NWPE. This study suggests that ML models may be useful tools to help improve seasonal forecasts of the NWPE." @default.
- W3168227557 created "2021-06-22" @default.
- W3168227557 creator A5000578289 @default.
- W3168227557 creator A5050754472 @default.
- W3168227557 creator A5052892649 @default.
- W3168227557 creator A5079796208 @default.
- W3168227557 date "2021-06-08" @default.
- W3168227557 modified "2023-10-03" @default.
- W3168227557 title "Seasonal Forecast of Non-monsoonal Winter Precipitation over the Eurasian Continent using Machine Learning Models" @default.
- W3168227557 cites W1539419152 @default.
- W3168227557 cites W1594031697 @default.
- W3168227557 cites W1599651335 @default.
- W3168227557 cites W1678356000 @default.
- W3168227557 cites W1863789789 @default.
- W3168227557 cites W1867005924 @default.
- W3168227557 cites W1976399560 @default.
- W3168227557 cites W1995349031 @default.
- W3168227557 cites W2002014094 @default.
- W3168227557 cites W2006165291 @default.
- W3168227557 cites W2012786098 @default.
- W3168227557 cites W2015630970 @default.
- W3168227557 cites W2018940508 @default.
- W3168227557 cites W2025982284 @default.
- W3168227557 cites W2030116498 @default.
- W3168227557 cites W2044123688 @default.
- W3168227557 cites W2048430163 @default.
- W3168227557 cites W2060172488 @default.
- W3168227557 cites W2063120355 @default.
- W3168227557 cites W2069201244 @default.
- W3168227557 cites W2070493638 @default.
- W3168227557 cites W2075759098 @default.
- W3168227557 cites W2084727598 @default.
- W3168227557 cites W2086982132 @default.
- W3168227557 cites W2098394621 @default.
- W3168227557 cites W2102687083 @default.
- W3168227557 cites W2104861953 @default.
- W3168227557 cites W2114991930 @default.
- W3168227557 cites W2117396433 @default.
- W3168227557 cites W2153929442 @default.
- W3168227557 cites W2168714013 @default.
- W3168227557 cites W2173515365 @default.
- W3168227557 cites W2175808424 @default.
- W3168227557 cites W2184035228 @default.
- W3168227557 cites W2237880282 @default.
- W3168227557 cites W248047951 @default.
- W3168227557 cites W2586821431 @default.
- W3168227557 cites W2604882439 @default.
- W3168227557 cites W2744628223 @default.
- W3168227557 cites W2768348081 @default.
- W3168227557 cites W2775070522 @default.
- W3168227557 cites W2789394811 @default.
- W3168227557 cites W2889246260 @default.
- W3168227557 cites W2889316618 @default.
- W3168227557 cites W2903758338 @default.
- W3168227557 cites W2906315655 @default.
- W3168227557 cites W2919841204 @default.
- W3168227557 cites W2940010972 @default.
- W3168227557 cites W2942851257 @default.
- W3168227557 cites W2948200844 @default.
- W3168227557 cites W2954482899 @default.
- W3168227557 cites W2963547740 @default.
- W3168227557 cites W2964022491 @default.
- W3168227557 cites W2973731563 @default.
- W3168227557 cites W2989005980 @default.
- W3168227557 cites W3002565078 @default.
- W3168227557 cites W3020689226 @default.
- W3168227557 cites W3023943971 @default.
- W3168227557 cites W3024417993 @default.
- W3168227557 cites W3046782112 @default.
- W3168227557 cites W3102476541 @default.
- W3168227557 doi "https://doi.org/10.1175/jcli-d-21-0113.1" @default.
- W3168227557 hasPublicationYear "2021" @default.
- W3168227557 type Work @default.
- W3168227557 sameAs 3168227557 @default.
- W3168227557 citedByCount "8" @default.
- W3168227557 countsByYear W31682275572022 @default.
- W3168227557 countsByYear W31682275572023 @default.
- W3168227557 crossrefType "journal-article" @default.
- W3168227557 hasAuthorship W3168227557A5000578289 @default.
- W3168227557 hasAuthorship W3168227557A5050754472 @default.
- W3168227557 hasAuthorship W3168227557A5052892649 @default.
- W3168227557 hasAuthorship W3168227557A5079796208 @default.
- W3168227557 hasConcept C105795698 @default.
- W3168227557 hasConcept C107054158 @default.
- W3168227557 hasConcept C119857082 @default.
- W3168227557 hasConcept C119898033 @default.
- W3168227557 hasConcept C127313418 @default.
- W3168227557 hasConcept C13724139 @default.
- W3168227557 hasConcept C140178040 @default.
- W3168227557 hasConcept C153294291 @default.
- W3168227557 hasConcept C169258074 @default.
- W3168227557 hasConcept C170061395 @default.
- W3168227557 hasConcept C205649164 @default.
- W3168227557 hasConcept C33923547 @default.
- W3168227557 hasConcept C39432304 @default.
- W3168227557 hasConcept C41008148 @default.
- W3168227557 hasConcept C49204034 @default.
- W3168227557 hasConcept C5274069 @default.