Matches in SemOpenAlex for { <https://semopenalex.org/work/W3168283368> ?p ?o ?g. }
- W3168283368 endingPage "12" @default.
- W3168283368 startingPage "1" @default.
- W3168283368 abstract "Educational resource data are a collection of final documents obtained by users, including full-text journals, books, dissertations, newspapers, conference papers, and other database materials. While searching for information in the educational resource database, these resources also have functions such as copying, downloading, reproduction, and dissemination, which raise the issue of expression and protection of intellectual property. Machine learning takes how computers simulate human learning behaviors as the main research content, which can independently determine learning objects, construct their characteristics, perform additional operations beyond the limitations of preset instructions, and discover value from the expression of relative works. On the basis of summarizing and analyzing previous research works, this paper expounded the current research status and significance of intellectual property expression and protection of educational resource data; elaborated the development background, current status, and future challenges of machine learning technology; introduced the methods and principles of data classification algorithm and protection authority identification; performed the technical framework design and expression system establishment of the intellectual property expression of educational resource data based on machine learning; analyzed the mode optimization and rule management of intellectual property protection of educational resource data based on machine learning; and finally conducted a simulation experiment and its result analysis. The results show that the machine learning technology can build a subject-oriented, highly integrated, and time-changing educational resource data storage environment; the comprehensive, analysis-oriented decision-supporting system formed by machine learning can give full play to the potential role of data integration and value discovery and is therefore of great significance for the intellectual property expression and protection of integrated and complexly-related educational resource data. The study results of this paper provide a reference for further research on the intellectual property expression and protection of educational resource data based on machine learning." @default.
- W3168283368 created "2021-06-22" @default.
- W3168283368 creator A5064779381 @default.
- W3168283368 date "2021-06-17" @default.
- W3168283368 modified "2023-10-15" @default.
- W3168283368 title "Mode Optimization and Rule Management of Intellectual Property Rights Protection of Educational Resource Data Based on Machine Learning Algorithm" @default.
- W3168283368 cites W1653772293 @default.
- W3168283368 cites W2265989037 @default.
- W3168283368 cites W2276069931 @default.
- W3168283368 cites W2294209883 @default.
- W3168283368 cites W2343279455 @default.
- W3168283368 cites W2408246687 @default.
- W3168283368 cites W2515971688 @default.
- W3168283368 cites W2524128008 @default.
- W3168283368 cites W2526136842 @default.
- W3168283368 cites W2585196148 @default.
- W3168283368 cites W2741038359 @default.
- W3168283368 cites W2745820079 @default.
- W3168283368 cites W2754269240 @default.
- W3168283368 cites W2811973125 @default.
- W3168283368 cites W2894279555 @default.
- W3168283368 cites W2896685184 @default.
- W3168283368 cites W2912103419 @default.
- W3168283368 cites W2939638527 @default.
- W3168283368 cites W2971718024 @default.
- W3168283368 cites W2991582385 @default.
- W3168283368 cites W2996097588 @default.
- W3168283368 cites W2998014069 @default.
- W3168283368 cites W3001077607 @default.
- W3168283368 cites W3001284874 @default.
- W3168283368 cites W3019730171 @default.
- W3168283368 cites W3022147319 @default.
- W3168283368 cites W3022704604 @default.
- W3168283368 cites W3035016310 @default.
- W3168283368 cites W3043370557 @default.
- W3168283368 cites W3089144884 @default.
- W3168283368 cites W3091266930 @default.
- W3168283368 cites W3093270589 @default.
- W3168283368 cites W3108516149 @default.
- W3168283368 cites W3109732960 @default.
- W3168283368 cites W642715168 @default.
- W3168283368 doi "https://doi.org/10.1155/2021/1909518" @default.
- W3168283368 hasPublicationYear "2021" @default.
- W3168283368 type Work @default.
- W3168283368 sameAs 3168283368 @default.
- W3168283368 citedByCount "6" @default.
- W3168283368 countsByYear W31682833682022 @default.
- W3168283368 countsByYear W31682833682023 @default.
- W3168283368 crossrefType "journal-article" @default.
- W3168283368 hasAuthorship W3168283368A5064779381 @default.
- W3168283368 hasBestOaLocation W31682833681 @default.
- W3168283368 hasConcept C111472728 @default.
- W3168283368 hasConcept C111919701 @default.
- W3168283368 hasConcept C11413529 @default.
- W3168283368 hasConcept C116834253 @default.
- W3168283368 hasConcept C119857082 @default.
- W3168283368 hasConcept C136764020 @default.
- W3168283368 hasConcept C138885662 @default.
- W3168283368 hasConcept C154945302 @default.
- W3168283368 hasConcept C17744445 @default.
- W3168283368 hasConcept C189950617 @default.
- W3168283368 hasConcept C199539241 @default.
- W3168283368 hasConcept C206345919 @default.
- W3168283368 hasConcept C2522767166 @default.
- W3168283368 hasConcept C2779151265 @default.
- W3168283368 hasConcept C31258907 @default.
- W3168283368 hasConcept C34974158 @default.
- W3168283368 hasConcept C41008148 @default.
- W3168283368 hasConcept C56739046 @default.
- W3168283368 hasConcept C59822182 @default.
- W3168283368 hasConcept C71901391 @default.
- W3168283368 hasConcept C86803240 @default.
- W3168283368 hasConceptScore W3168283368C111472728 @default.
- W3168283368 hasConceptScore W3168283368C111919701 @default.
- W3168283368 hasConceptScore W3168283368C11413529 @default.
- W3168283368 hasConceptScore W3168283368C116834253 @default.
- W3168283368 hasConceptScore W3168283368C119857082 @default.
- W3168283368 hasConceptScore W3168283368C136764020 @default.
- W3168283368 hasConceptScore W3168283368C138885662 @default.
- W3168283368 hasConceptScore W3168283368C154945302 @default.
- W3168283368 hasConceptScore W3168283368C17744445 @default.
- W3168283368 hasConceptScore W3168283368C189950617 @default.
- W3168283368 hasConceptScore W3168283368C199539241 @default.
- W3168283368 hasConceptScore W3168283368C206345919 @default.
- W3168283368 hasConceptScore W3168283368C2522767166 @default.
- W3168283368 hasConceptScore W3168283368C2779151265 @default.
- W3168283368 hasConceptScore W3168283368C31258907 @default.
- W3168283368 hasConceptScore W3168283368C34974158 @default.
- W3168283368 hasConceptScore W3168283368C41008148 @default.
- W3168283368 hasConceptScore W3168283368C56739046 @default.
- W3168283368 hasConceptScore W3168283368C59822182 @default.
- W3168283368 hasConceptScore W3168283368C71901391 @default.
- W3168283368 hasConceptScore W3168283368C86803240 @default.
- W3168283368 hasFunder F4320321106 @default.
- W3168283368 hasLocation W31682833681 @default.
- W3168283368 hasOpenAccess W3168283368 @default.
- W3168283368 hasPrimaryLocation W31682833681 @default.
- W3168283368 hasRelatedWork W1983811306 @default.