Matches in SemOpenAlex for { <https://semopenalex.org/work/W3168367332> ?p ?o ?g. }
- W3168367332 endingPage "2015" @default.
- W3168367332 startingPage "2001" @default.
- W3168367332 abstract "Abstract The traveling salesman problem (TSP) is one of the best-known combinatorial optimization problems. Many methods derived from TSP have been applied to study autonomous vehicle route planning with fuel constraints. Nevertheless, less attention has been paid to reinforcement learning (RL) as a potential method to solve refueling problems. This paper employs RL to solve the traveling salesman problem With refueling (TSPWR). The technique proposes a model (actions, states, reinforcements) and RL-TSPWR algorithm. Focus is given on the analysis of RL parameters and on the refueling influence in route learning optimization of fuel cost. Two RL algorithms: Q-learning and SARSA are compared. In addition, RL parameter estimation is performed by Response Surface Methodology, Analysis of Variance and Tukey Test. The proposed method achieves the best solution in 15 out of 16 case studies." @default.
- W3168367332 created "2021-06-22" @default.
- W3168367332 creator A5022708886 @default.
- W3168367332 creator A5035819140 @default.
- W3168367332 creator A5041783114 @default.
- W3168367332 creator A5063086327 @default.
- W3168367332 date "2021-06-16" @default.
- W3168367332 modified "2023-10-18" @default.
- W3168367332 title "Reinforcement learning for the traveling salesman problem with refueling" @default.
- W3168367332 cites W1272360329 @default.
- W3168367332 cites W15274158 @default.
- W3168367332 cites W1566652554 @default.
- W3168367332 cites W1681019253 @default.
- W3168367332 cites W1968594877 @default.
- W3168367332 cites W1975671633 @default.
- W3168367332 cites W1977319619 @default.
- W3168367332 cites W1977655452 @default.
- W3168367332 cites W1996579288 @default.
- W3168367332 cites W1997880753 @default.
- W3168367332 cites W2004445756 @default.
- W3168367332 cites W2011479462 @default.
- W3168367332 cites W2012380321 @default.
- W3168367332 cites W2015164669 @default.
- W3168367332 cites W2049842224 @default.
- W3168367332 cites W2061594663 @default.
- W3168367332 cites W2063677508 @default.
- W3168367332 cites W2067508429 @default.
- W3168367332 cites W2078256846 @default.
- W3168367332 cites W2094633678 @default.
- W3168367332 cites W2101097294 @default.
- W3168367332 cites W2101334607 @default.
- W3168367332 cites W2107726111 @default.
- W3168367332 cites W2124267516 @default.
- W3168367332 cites W2134752723 @default.
- W3168367332 cites W2154929945 @default.
- W3168367332 cites W2164866963 @default.
- W3168367332 cites W2167861360 @default.
- W3168367332 cites W2171153116 @default.
- W3168367332 cites W2302573915 @default.
- W3168367332 cites W2323637477 @default.
- W3168367332 cites W2491562227 @default.
- W3168367332 cites W2541845126 @default.
- W3168367332 cites W2565915643 @default.
- W3168367332 cites W2583041400 @default.
- W3168367332 cites W2591182809 @default.
- W3168367332 cites W2766253973 @default.
- W3168367332 cites W2783187312 @default.
- W3168367332 cites W2790485448 @default.
- W3168367332 cites W2803474308 @default.
- W3168367332 cites W2887759215 @default.
- W3168367332 cites W2888116234 @default.
- W3168367332 cites W2898292712 @default.
- W3168367332 cites W2909092490 @default.
- W3168367332 cites W2911857968 @default.
- W3168367332 cites W2912063360 @default.
- W3168367332 cites W2917089854 @default.
- W3168367332 cites W2920854799 @default.
- W3168367332 cites W2924645442 @default.
- W3168367332 cites W2938157874 @default.
- W3168367332 cites W2939569248 @default.
- W3168367332 cites W2940740707 @default.
- W3168367332 cites W2953167125 @default.
- W3168367332 cites W2957896026 @default.
- W3168367332 cites W2963097515 @default.
- W3168367332 cites W2963749556 @default.
- W3168367332 cites W2964117926 @default.
- W3168367332 cites W2989817131 @default.
- W3168367332 cites W3013962489 @default.
- W3168367332 cites W3017102079 @default.
- W3168367332 cites W3035873712 @default.
- W3168367332 cites W3040879766 @default.
- W3168367332 cites W3091755028 @default.
- W3168367332 cites W3111602004 @default.
- W3168367332 cites W32403112 @default.
- W3168367332 cites W4213308398 @default.
- W3168367332 cites W4289541200 @default.
- W3168367332 doi "https://doi.org/10.1007/s40747-021-00444-4" @default.
- W3168367332 hasPublicationYear "2021" @default.
- W3168367332 type Work @default.
- W3168367332 sameAs 3168367332 @default.
- W3168367332 citedByCount "10" @default.
- W3168367332 countsByYear W31683673322021 @default.
- W3168367332 countsByYear W31683673322022 @default.
- W3168367332 countsByYear W31683673322023 @default.
- W3168367332 crossrefType "journal-article" @default.
- W3168367332 hasAuthorship W3168367332A5022708886 @default.
- W3168367332 hasAuthorship W3168367332A5035819140 @default.
- W3168367332 hasAuthorship W3168367332A5041783114 @default.
- W3168367332 hasAuthorship W3168367332A5063086327 @default.
- W3168367332 hasBestOaLocation W31683673321 @default.
- W3168367332 hasConcept C106472803 @default.
- W3168367332 hasConcept C121955636 @default.
- W3168367332 hasConcept C126255220 @default.
- W3168367332 hasConcept C139502532 @default.
- W3168367332 hasConcept C144133560 @default.
- W3168367332 hasConcept C154945302 @default.
- W3168367332 hasConcept C175859090 @default.
- W3168367332 hasConcept C196083921 @default.