Matches in SemOpenAlex for { <https://semopenalex.org/work/W3168486587> ?p ?o ?g. }
- W3168486587 endingPage "1957" @default.
- W3168486587 startingPage "1944" @default.
- W3168486587 abstract "Rapid and accurate access to large-scale, high-resolution crop-type distribution maps is important for agricultural management and sustainable agricultural development. Due to the limitations of remote sensing image quality and data processing capabilities, large-scale crop classification is still challenging. This study aimed to map the distribution of crops in Heilongjiang Province using Google Earth Engine (GEE) and Sentinel-1 and Sentinel-2 images. We obtained Sentinel-1 and Sentinel-2 images from all the covered study areas in the critical period for crop growth in 2018 (May to September), combined monthly composite images of reflectance bands, vegetation indices and polarization bands as input features, and then performed crop classification using a Random Forest (RF) classifier. The results show that the Sentinel-1 and Sentinel-2 monthly composite images combined with the RF classifier can accurately generate the crop distribution map of the study area, and the overall accuracy (OA) reached 89.75%. Through experiments, we also found that the classification performance using time-series images is significantly better than that using single-period images. Compared with the use of traditional bands only (i.e., the visible and near-infrared bands), the addition of shortwave infrared bands can improve the accuracy of crop classification most significantly, followed by the addition of red-edge bands. Adding common vegetation indices and Sentinel-1 data to the crop classification improved the overall classification accuracy and the OA by 0.2 and 0.6%, respectively, compared to using only the Sentinel-2 reflectance bands. The analysis of timeliness revealed that when the July image is available, the increase in the accuracy of crop classification is the highest. When the Sentinel-1 and Sentinel-2 images for May, June, and July are available, an OA greater than 80% can be achieved. The results of this study are applicable to large-scale, high-resolution crop classification and provide key technologies for remote sensing-based crop classification in small-scale agricultural areas." @default.
- W3168486587 created "2021-06-22" @default.
- W3168486587 creator A5000293148 @default.
- W3168486587 creator A5005373097 @default.
- W3168486587 creator A5009394405 @default.
- W3168486587 creator A5023722126 @default.
- W3168486587 creator A5037220425 @default.
- W3168486587 creator A5068108132 @default.
- W3168486587 date "2021-07-01" @default.
- W3168486587 modified "2023-10-09" @default.
- W3168486587 title "Monthly composites from Sentinel-1 and Sentinel-2 images for regional major crop mapping with Google Earth Engine" @default.
- W3168486587 cites W1520812622 @default.
- W3168486587 cites W1584308190 @default.
- W3168486587 cites W1969548928 @default.
- W3168486587 cites W1969834758 @default.
- W3168486587 cites W2000613913 @default.
- W3168486587 cites W2008085934 @default.
- W3168486587 cites W2023696667 @default.
- W3168486587 cites W2034085189 @default.
- W3168486587 cites W2053154970 @default.
- W3168486587 cites W2063623478 @default.
- W3168486587 cites W2086656854 @default.
- W3168486587 cites W2098059510 @default.
- W3168486587 cites W2113410727 @default.
- W3168486587 cites W2116888634 @default.
- W3168486587 cites W2117189556 @default.
- W3168486587 cites W2138973222 @default.
- W3168486587 cites W2171599506 @default.
- W3168486587 cites W2259165179 @default.
- W3168486587 cites W2342893289 @default.
- W3168486587 cites W2397355252 @default.
- W3168486587 cites W2468709268 @default.
- W3168486587 cites W2583513334 @default.
- W3168486587 cites W2604086375 @default.
- W3168486587 cites W2613013283 @default.
- W3168486587 cites W2742500659 @default.
- W3168486587 cites W2767953525 @default.
- W3168486587 cites W2768079294 @default.
- W3168486587 cites W2791592925 @default.
- W3168486587 cites W2792187028 @default.
- W3168486587 cites W2811052780 @default.
- W3168486587 cites W2883026662 @default.
- W3168486587 cites W2886054370 @default.
- W3168486587 cites W2886280167 @default.
- W3168486587 cites W2897285410 @default.
- W3168486587 cites W2900217217 @default.
- W3168486587 cites W2907459272 @default.
- W3168486587 cites W2921408119 @default.
- W3168486587 cites W2922412082 @default.
- W3168486587 cites W2930338965 @default.
- W3168486587 cites W2939118835 @default.
- W3168486587 cites W2988656079 @default.
- W3168486587 cites W3033448968 @default.
- W3168486587 cites W3033660997 @default.
- W3168486587 doi "https://doi.org/10.1016/s2095-3119(20)63329-9" @default.
- W3168486587 hasPublicationYear "2021" @default.
- W3168486587 type Work @default.
- W3168486587 sameAs 3168486587 @default.
- W3168486587 citedByCount "35" @default.
- W3168486587 countsByYear W31684865872021 @default.
- W3168486587 countsByYear W31684865872022 @default.
- W3168486587 countsByYear W31684865872023 @default.
- W3168486587 crossrefType "journal-article" @default.
- W3168486587 hasAuthorship W3168486587A5000293148 @default.
- W3168486587 hasAuthorship W3168486587A5005373097 @default.
- W3168486587 hasAuthorship W3168486587A5009394405 @default.
- W3168486587 hasAuthorship W3168486587A5023722126 @default.
- W3168486587 hasAuthorship W3168486587A5037220425 @default.
- W3168486587 hasAuthorship W3168486587A5068108132 @default.
- W3168486587 hasBestOaLocation W31684865871 @default.
- W3168486587 hasConcept C127313418 @default.
- W3168486587 hasConcept C137580998 @default.
- W3168486587 hasConcept C154945302 @default.
- W3168486587 hasConcept C159078339 @default.
- W3168486587 hasConcept C169258074 @default.
- W3168486587 hasConcept C205649164 @default.
- W3168486587 hasConcept C2776388979 @default.
- W3168486587 hasConcept C39432304 @default.
- W3168486587 hasConcept C41008148 @default.
- W3168486587 hasConcept C62649853 @default.
- W3168486587 hasConcept C97137747 @default.
- W3168486587 hasConceptScore W3168486587C127313418 @default.
- W3168486587 hasConceptScore W3168486587C137580998 @default.
- W3168486587 hasConceptScore W3168486587C154945302 @default.
- W3168486587 hasConceptScore W3168486587C159078339 @default.
- W3168486587 hasConceptScore W3168486587C169258074 @default.
- W3168486587 hasConceptScore W3168486587C205649164 @default.
- W3168486587 hasConceptScore W3168486587C2776388979 @default.
- W3168486587 hasConceptScore W3168486587C39432304 @default.
- W3168486587 hasConceptScore W3168486587C41008148 @default.
- W3168486587 hasConceptScore W3168486587C62649853 @default.
- W3168486587 hasConceptScore W3168486587C97137747 @default.
- W3168486587 hasIssue "7" @default.
- W3168486587 hasLocation W31684865871 @default.
- W3168486587 hasOpenAccess W3168486587 @default.
- W3168486587 hasPrimaryLocation W31684865871 @default.
- W3168486587 hasRelatedWork W1968704421 @default.
- W3168486587 hasRelatedWork W1975591846 @default.